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EXECUTIVE SUMMARY

This pilot study explores the integration of mobility data collection applications with personalized
recommendation systems to enhance user-specific travel suggestions and promote sustainable
transportation behavior. We leverage the open-source NREL OpenPATH platform to collect
detailed mobility data including travel trajectories, inferred modes, and user annotations from a
cohort of participants over a one-year period. Our analysis identifies several challenges in the
sensed data, including misclassification of transportation modes and inaccurate trip segmentation,
which highlight the need for improved sensing and user interface design. To establish a foundation
for recommendation modeling, we evaluate the [temKNN algorithm on a filtered subset of the Yelp
dataset. Results indicate that user history richness improves performance across precision, recall,
and nDCG metrics. Building on these insights, we develop a prototype personalized
recommendation system that dynamically suggests Points-of-Interest (POIs) based on location,
time, and user behavior. This system incorporates a reward mechanism that offers incentives to
encourage the adoption of suggested alternatives and collects user feedback to iteratively refine
future recommendations. The findings suggest that integrating personalized recommendations
with mobility tracking can create a closed-loop system where improved data quality enhances
recommendations, which in turn drives user engagement and behavior change. This pilot
demonstrates the feasibility of such integration and offers a blueprint for future research.
Applications of this framework include scalable interventions for promoting active travel, reducing
carbon emissions, and supporting individualized transportation planning through intelligent,
adaptive systems.



INTRODUCTION

The rapid evolution of smartphone technology has revolutionized the way transportation
researchers collect mobility data and understand travel behavior (Berger & Platzer, 2015; Lopes et
al., 2010; You et al., 2018). Smartphones are increasingly leveraged to passively and actively
gather user movement patterns, leveraging GPS, accelerometers, and other sensors to capture
granular travel trajectories (Korpilo et al., 2017; Lynch et al., 2019; Molloy et al., 2023). In parallel,
personalized recommendation systems enabled by advances in machine learning and behavioral
modeling have emerged as promising tools for influencing sustainable transportation choices by
tailoring suggestions based on individual preferences and behaviors (Liu et al., 2021; Meena et al.,
2024; Yuan & Zheng, 2024). However, these two research streams, mobility data collection and
personalized travel recommendation, have largely evolved in isolation. We hypothesize that
enhancing personalized recommendations also requires improvements in the quality of collected
mobility data. By leveraging recent advances in adaptive sensing (You et al., 2020), uncertainty
quantification (Wang et al., 2024; Zhou et al., 2021), and predictive modeling (Steentoft et al.,
2024), the application can more effectively capture accurate, high-resolution data that faithfully
represent users’ travel trajectories and behaviors. Conversely, delivering high-quality, personalized
recommendations is likely to boost user engagement, which in turn supports sustained, long-term
use of the app across a diverse user base.

This study aims to bridge the gap between mobility data collection and personalized
recommendations by investigating the integration of open-source mobility data collection
platforms with recommendation systems to enable adaptive, user-specific travel suggestions. We
begin with a comprehensive literature review focusing on three major components: (1) open-
source platforms for mobility data collection, (2) recommendation systems used in travel domain,
and (3) sources of public location-based recommendation datasets. By synthesizing insights from
these domains, we identify existing technical capacities and highlight integration opportunities to
enable a data-driven feedback loop between user behavior and system recommendation. As a
preliminary investigation, we apply a baseline recommendation model to the Yelp dataset to
explore how location-based recommendation data can inform travel activity suggestions. These
early experiments demonstrate the potential for using points-of-interest (POI) data to generate
personalized recommendations and serve as a foundation for incorporating richer mobility patterns.
Building on these findings, we introduce our collected dataset using NREL’s OpenPATH platform.
This dataset contains detailed travel trajectories and user-reported annotations from a pilot cohort.
We conduct exploratory data analysis to characterize typical travel behaviors. Based on these
insights, we present preliminary results of travel behavior patterns derived from our collected data,
followed by a discussion of data quality issues and the factors contributing to its limitations. Then
we design a prototype personalized POI recommendation system with rewards to encourage users
to accept the travel alternatives. We conclude by outlining the envisioned capabilities of the final
application and its potential to inform long-term travel behavior change.

By closing the loop between mobility data collection and recommendation, this study offers
a pilot framework to improve the relevance of travel suggestions tailored to users' individual travel
behaviors. The proposed integration paves the way for more intelligent, sustainable, and user-
centered transportation systems.



LITERATURE REVIEW

1. Open-Source Mobility Data Collection Platforms

The emphasis on open-source platforms in the context of mobility data collection stems from their
inherent advantages of transparency (Bemmann et al., 2022), reusability (You et al., 2020), and the
potential for customization (Al-Rahamneh et al., 2021). These platforms can play a crucial role in
public access to mobility data collection tools, although they also present unique challenges.

NREL OpenPATH: It is an open-source, extensible smartphone platform for collecting
travel diary data (Shankari et al., 2018). It consists of a mobile app for Android/iOS and cloud-
based server components. The system continuously captures location traces (GPS coordinates),
along with phone sensor data, e.g. accelerometer, to infer travel modes, and allows user input such
as prompted annotations or survey responses. Data collection is largely automated - the app can
detect trip start/end and record routes and modes (e.g. walk, bike, car, transit) without requiring
manual input for each trip. The platform produces an output travel diary: a sequence of trips and
segments with modes and purposes identified. The architecture follows an loT-like sensor-server-
client model: the phone acts as both sensor (collecting data) and client (displaying personalized
information), while the server handles data upload, processing pipelines (often written in Python
for extensibility), and provides a REST API for analysis and external integration. Crucially, NREL
OpenPATH was built with extensibility in mind. It is fully open-source and modular, allowing
researchers to customize surveys, add new sensors or analysis modules, and integrate with other
tools with relatively little effort. In a pilot deployment (Shankari et al., 2018), over 150 users
installed the app in one month, and the platform was found to be stable and usable, with over 85%
of users retaining the app beyond 3 days. This demonstrates its viability for real-world studies. The
platform also adds features like energy/emissions estimates for trips. NREL OpenPATH enables
logging of multi-modal trips (e.g. segments by car, bus, bike, etc.) and automatically computes
associated energy use and carbon footprint for each trip. It includes a dashboard interface for users
and project administrators, supporting visualizations of individual travel patterns and program-
wide monitoring. Because of its open design, OpenPATH is highly adaptable for integration
(Greenlee et al., 2024). Developers can fork the code to build new functionality, or use its API to
feed data into external applications. However, reported accuracies of automated mode detection
typically range around 70-80% in the system, which limits the reliability of the data for
downstream tasks such as learning users’ travel behaviors.

OneBusAway: Initially developed as a real-time transit information provider,
OneBusAway has been extended to include capabilities for passively collecting multimodal travel
behavior data from users who opt-in to participate (Ferris et al., 2010b). This platform has been
utilized in several U.S. cities, including New York City, Tampa, and Atlanta, for examining the
impact of real-time transit information on ridership levels and overall travel behavior (Watkins,
2011). The data collected encompasses multimodal travel patterns and, with user consent, can
potentially be linked to transit trip histories from smart card systems. The strength of OneBusAway
lies in its ability to leverage an existing and often widely adopted transit information platform,
thereby enabling large-scale data collection and facilitating natural experiments (Ferris et al.,
2010a). When linked with other data sources, it can support disaggregate analysis of travel
behavior. Nevertheless, data collection relies on user opt-in, and supplementary survey data
collected alongside can be susceptible to recall bias and issues of sample representativeness.
Furthermore, the availability and granularity of the data can be constrained by the policies of
participating transit agencies and overarching privacy concerns.



Other Platforms and Standards: The landscape of open-source mobility tools and
standards is continually evolving. The Open Mobility Foundation's Mobility Data Specification
(MDS) is gaining traction as a standard for communication and data sharing, primarily between
municipal authorities and private mobility service providers like e-scooter and bike-share
companies. MDS is primarily aimed at regulatory and operational management and standardizes
the data concerning vehicle status, location, and trips, explicitly excluding personally identifiable
information of riders. General mobile sensing frameworks like AWARE (Ferreira et al., 2015; van
Berkel et al., 2023) and the now-defunct Funf have also been used in research to log location and
activity data on phones, but they require building custom analysis pipelines. There are also
proprietary systems like Google’s Location Timeline (Macarulla Rodriguez et al., 2018), Apple
Health/Maps (Jung et al., 2019), or the former Moves app (Evenson & Furberg, 2017), which
tracked users’ movements and modes automatically. These commercial platforms demonstrate the
feasibility and popularity of passive travel logging, but their data is not easily accessible for custom
integration and raises privacy concerns. Thus, open platforms like NREL OpenPATH are favored
in research since they allow full control over data and the ability to plug in new modules, e.g. a
recommendation algorithm, directly.

In summary, the ecosystem of mobility data collection apps provides a strong foundation
for integrated solutions. The platforms capture rich multimodal data (trips, modes, timestamps,
sensors) in a structured way and often include features (APIs, modular code, dashboards) that make
them adaptable.

2. Travel Recommendation Systems

Personalized recommendation systems for travel aim to tailor suggestions or advice to an
individual’s mobility needs and preferences. In the context of daily travel, e.g., commuting, errands,
leisure trips, personalization can take many forms. We outline several key categories of travel-
related recommendation systems: route planning and navigation, transport mode choice, departure
time optimization, and energy efficient travel suggestions. These categories often overlap in
practice. For instance, an APP might recommend a multi-modal route (combining mode choice
and routing) that also happens to minimize energy use and is presented with a motivational
message (nudging). Here we explore each category and give examples of how recommendations
are formulated and what data they use.

2.1 Route Planning and Navigation

Route recommendation systems suggest optimal paths from A to B, typically aiming to minimize
travel time or distance. Modern navigation apps (Google Maps, Waze, etc.) use real-time traffic
data to recommend the fastest route (Santos et al., 2011). However, basic navigation is not strongly
personalized - it generally assumes all users want the “fastest” or “shortest” route. Recent research
highlights the need for more personalized route planning that accounts for individual preferences
(e.g. avoiding tolls, favoring scenic routes, or preferring bike-friendly paths) (Funke & Storandt,
2015; Niaraki & Kim, 2009; R. Wang et al., 2022). Many current systems allow users to specify
some static preferences (avoid highways, etc.), but do not truly learn or adapt to a user’s behavior
patterns in real time (Jayasuriya & Sumanathilaka, 2025). Another aspect is real-time adaptability:
if an unexpected disruption occurs (accident, transit delay), a personalized system could account
for the user’s context (e.g. willingness to walk vs. wait) in rerouting (Mirchandani & Head, 2001;
Szczerba et al., 2000). Some studies (Donoso et al., 2013; Lorenz et al., 2013; Ruiz et al., 2024;
Zhang et al., 2022) are applying machine learning (e.g. reinforcement learning or collaborative



filtering) to predict not just travel time but user satisfaction with routes, adjusting
recommendations accordingly. Safety and comfort can also guide route recommendations: e.g.,
routing cyclists along quieter streets or pedestrians through well-lit paths (Sohrabi et al., 2022;
Zaoad et al., 2023). In sum, route planning is evolving from one-size-fits-all directions to context-
aware, user-specific navigation. An integrated platform would exploit the continuous data it
collects (routes taken, travel times, feedback) to refine future route suggestions for that user,
creating a feedback loop of improvement.

2.2 Transport Mode Choice Recommendations

Another class of recommendation focuses on which mode of transport a person should take for a
trip. A personalized system can recommend a mode (or combination of modes) based on criteria
like travel time (Vautard et al., 2021), cost (McCarthy et al., 2017), and personal preferences (Lind
et al., 2015). Lai et al. (2023) propose the Balance Multi Travel Mode Deep Learning Prediction
(BMTM-DLP) model, which extracts user-specific travel preferences from historical trip data,
enabling a more personalized prediction of mode choice rather than relies solely on aggregate
traveler characteristics. Mode choice recommender systems often tie into policy goals like
reducing single-occupancy vehicle trips or increasing active travel. Xu et al. (2021) demonstrates
how a personalized trip planning system can influence sustainable travel behavior by
recommending eco-friendly modes such as walking, cycling, and public transit based on individual
preferences and contextual data. There have been field experiments where commuters receive
recommendations to switch modes along with incentives (W. Wang et al., 2022). Castellanos
(2016) conducts a field study in Bogota, Colombia. It explores the effectiveness of both monetary
and non-monetary incentives delivered via a gamified smartphone app to encourage modal shifts
toward sustainable transport modes. Personalized mode recommendations can also factor in user
constraints, e.g., knowing that the user has a bike available (Campigotto et al., 2017), or is
physically capable of walking a certain distance (Arnaoutaki et al., 2021). Modern APPs like
Citymapper (Tavmen, 2020) or Transit (Bian et al., 2022) compare modes, but a deeper
personalization might integrate the user’s own history from collected data to anticipate which
mode they are likely to be comfortable with. Ultimately, mode-choice recommendation systems
strive to present travelers with better alternatives to their default choice, in a user-friendly way.

2.3 Departure Time and Scheduling Optimization

Departure time recommendation systems aim to help users choose the optimal time for a trip, often
to avoid congestion or crowds. Real-time navigation apps already incorporate some of this (e.g.
“leave by 7:45 to arrive by 8:30”) (Jeske, 2013; Mehta et al., 2019), but a personalized system
could go further by learning a user’s schedule constraints and typical flexibility. The incenTrip app
(Xiong et al., 2020) targets departure time (as well as mode and route) optimization. IncenTrip
provides real-time multimodal traveler information and uses large-scale models to predict
congestion; it then personalizes incentives for each trip, encouraging users to travel at off-peak
times if possible. In practical terms, incenTrip might tell a commuter: “If you leave 15 minutes
later than usual today, traffic will be lighter and you’ll earn reward points for helping reduce peak
congestion.” By aligning individual benefit (less delay, plus points or monetary rewards) with
system benefit (smoother demand), such systems achieve a win-win. Khademi (2024) proposes a
modeling framework that generates optimal departure time recommendations by extending
existing departure time choice models to account for unreliable travel times. The study
distinguishes between scenarios with constant versus time-varying travel time variances and



demonstrates that system-generated recommendations can significantly outperform individual
judgment, particularly during peak periods when travel time uncertainty is higher. This highlights
the value of integrating data-driven departure time advice into personalized travel recommendation
systems to minimize user travel costs and enhance overall efficiency.

2.4 Energy-Efficient and Eco-Friendly Recommendations

With growing emphasis on sustainability, recommendation systems have emerged that focus on
energy efficiency and reducing emissions. These systems might recommend routes or modes that
save fuel or electricity, even if they are not the fastest. For instance, an eco-routing engine can
suggest a path that avoids steep hills and stop-and-go traffic to reduce fuel consumption (Fahmin
et al., 2025; Woo et al., 2024). Google Maps introduced an “eco-friendly routing” option that by
default shows the most fuel-efficient route when its ETA is comparable to the fastest route
(Jovanovic et al., 2024). This feature uses Al to identify routes with fewer hills or less idling, and
it displays the potential fuel savings to the user. Beyond routing, an integrated system can also
recommend mode shifts for energy reasons, e.g. suggesting public transit or carpool to reduce
carbon footprint (Shah et al., 2020). Some research prototypes, such as the Persuasive Coach for
CO2 Reduction (PEACOX) (Schrammel et al., 2013), explicitly combined route planning with
eco-feedback. The PEACOX provided a smartphone navigation app that offered eco-friendly
travel suggestions and then gave users feedback on the environmental impact of their choices. By
making users aware of their travel carbon footprint and showing improvements when they choose
greener options, the system aimed to encourage sustained behavior change. A challenge here is
balancing competing objectives: a route that is energy-efficient might be slower; a mode that is
eco-friendly might be less convenient for the user. A personalized system can attempt to find the
sweet spot, identifying opportunities when a user can reduce impact with minimal sacrifice (or
even gain benefits like exercise). In summary, energy-focused recommendation systems extend
the traditional notion of “optimal” travel to include environmental criteria.

3. Public Location-Based Social Network Data
Location-Based Social Network (LBSN) data is a valuable resource for understanding
human mobility, user preferences, and social influence in spatial contexts (Bao et al., 2015;
Kim et al., 2020). These datasets are typically collected from platforms where users
voluntarily check in at various venues, generating rich spatiotemporal records. Public
LBSN datasets have been widely used in research areas such as POI recommendation (Ye
et al., 2010), mobility modeling (Cho et al., 2011), urban computing (Silva et al., 2020), and
location prediction (Comito, 2020).
Table 1 presents a summary of several widely used public LBSN datasets, each with unique
characteristics in terms of user scale, check-in density, and geographic coverage.

The Foursquare dataset (Bao et al., 2012) is collected at the city level, specifically targeting
locations such as Tokyo (Deeva et al., 2020), New York (Sun, 2016) and London (Quercia & Saez,
2014). Beyond check-in and social relationship data, this dataset also provides enriched contextual
information, including user profiles, and venue categories. However, it lacks temporal continuity,
as the check-ins are not recorded with timestamps and cannot be used for sequence modeling. In
contrast, the Brightkite and Gowalla datasets (Cho et al., 2011) include both user friendship
networks and temporally ordered check-in sequences. Each check-in record contains geographic
coordinates and timestamps, making these datasets suitable for modeling user mobility over time.
The  Gowalla  dataset also  offers wuser comments. The  Yelp  dataset



(https://business.yelp.com/data/resources/open-dataset/) includes detailed information about local
businesses, user reviews, and ratings. Each business entry contains metadata such as location,
category, and star rating. The dataset also provides user profiles, which include check-in records,
review text, and social connections through user friendship links. While the dataset spans multiple
cities and contains a large number of users, it is characterized by a high degree of sparsity - many
users have only a few check-ins or reviews. This makes the Yelp dataset a challenging but valuable
resource for studying location-based recommendation systems, review modeling, and user
behavior analysis in real-world settings.

Table 1 The characteristics of public LBSN datasets.

Dataset Number of Users | Number of Check-ins | Check-ins per User
Foursquare 114,508 1,434,668 13
Foursquare

(Tokyo) 10,057 921,874 92
Foursquare
(New York) 7,832 315,472 40
Foursquare

(London) 4,443 141,402 32
Birghtkite 58,228 4,491,143 77
Gowalla 1 196,591 6,442,890 33
Gowalla 2 53,944 4,128,714 77

Yelp 1,326,101 5,261,669 4
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PRELIMINARY INVESTIGATION

To evaluate the performance of recommendation algorithms for POI recommendation, we assess [temKNN
(Deshpande &  Karypis, 2004) on the widely wused public LBSN dataset, Yelp
(https://business.yelp.com/data/resources/open-dataset/). ItemKNN is a K-nearest-neighborhood-based
method recommending items based on item cosine similarity. The characteristics of Yelp dataset are
summarized in Table 2. To ensure the model has sufficient data to effectively learn user preferences and
recommend subsequent locations, we apply two filtering strategies: a 5-filter and a 10-filter, which remove
users and items with fewer than 5 and 10 check-ins, respectively.

Table 2 The characteristics of Yelp dataset.

Dataset Number of Users | Number of Check-ins | Check-ins per User
Yelp (5-filter) 227109 3419587 15
Yelp (10-filter) 96168 2458153 26

We consider 70 nearest neighbors in the [temKNN algorithm to provide recommendations for users.
The dataset is split into training and test sets with a 4:1 ratio. Each user is presented with a candidate set of
1000 items, which includes items from the test set as well as randomly sampled items from the entire item
pool excluding those the user has interacted with in the training set. To evaluate the recommendation
performance, we adopt three widely used metrics in recommender systems:
e Precision: It represents the probability that a recommended POI is relevant. P@n is defined as the
ratio of the recommended and relevant POIs over the number of recommended POls. Rel@n
denotes the number of relevant POIs recommended at top 7.
Rel@n
P@n =

e Recall: It is the probability that a relevant POI is recommended. R@n is defined as the ratio of the
recommended and relevant POIs over the number of relevant POIs. Rel is the total number of the
relevant POls.

Rel@n
Relot

e nDCG: Discounted Cumulative Gain (DCG) is based on ranking position, and it measures the
relevance of a recommendation list considering the relevance of the rank position. Ideal DCG
(IDCQG) represents the maximum achievable DCG with the same set of relevance scores but in the
perfect ranking order. nDCG is the DCG divided by an ideal DCG that gives a normalized DCG.
rel; denotes the real relevance of POI k in the test set. In a rating-based dataset, this real relevance
would be the rating that the user gave to that POI in the test set. In our case, as we only know
whether (and when) a user has performed a check-in, we fix this ideal relevance to 1 as long as the
POI appears in the test set of the user (every POI visited by the user in the test set is equally relevant).
IDCG is computed in the same way as DCG but using the ground truth as the ranking.

R@n =

Zrelk _ 1
DCG@n= ) —
on Lilog,(kk+ 1)
peean < 2660
n "= Ipccen

Table 3 and Table 4 present the results of performances on S-filter and 10-filter Yelp dataset
respectively when recommending top n POIs to users where n = 1, 5, 10. When n increases, precision
decreases. This indicates that the top-1 POI recommendation is more likely to be relevant. The chance of
retrieving irrelevant POIs increases when expanding the recommendation list size. Recall increases with n
for both datasets since more items are retrieved, increasing the chance of including relevant ones. nDCG


https://business.yelp.com/data/resources/open-dataset/

increases with n, indicating that as the recommendation list expands, relevant POls are still ranked relatively
high, especially with richer user history in the 10-filter dataset. The 10-filter dataset, which retains users
with more check-in history, consistently outperforms the 5-filter dataset across all metrics. This confirms
that better user history improves the ability of [temKNN to capture preference signals.

Table 3 Recommendation performance on Yelp (5-filter).
Metrics@n | n=1 n=5 | n=10
Precision 0.212 | 0.133 | 0.095
Recall 0.060 | 0.153 | 0.194
nDCG 0.212 | 0.285 | 0.294

Table 4 Recommendation performance on Yelp (10-filter).
Metrics@n | n=1 n=5 | n=10
Precision | 0.289 | 0.205 | 0.158
Recall 0.058 | 0.176 | 0.247
nDCG 0.289 | 0.396 | 0.411
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DATA COLLECTION

NREL OpenPATH (Shankari et al., 2018) is an open-source, extensible smartphone platform
designed for collecting users’ mobility data. It includes a mobile application available for both
Android and i0S, along with supporting cloud-based server infrastructure. In our study, we
leverage NREL OpenPATH to collect mobility data from participants, who are recruited through a
dedicated website (https://uw-prs-openpath.nrel.gov/join/?sub_group=default) that outlines the
study’s purpose. The website interface is provided in Figure 1.

University of Washington UW Personalized
Recommendation Systems Study

Thank you for participating in University of Washington UW Personalized Recommendation Systems
Study.

Purpose of Study

To make better personalized recommendation, the data collection is very important. The APP can prioritize data
collection tasks and identify crucial time points for data collection with the help of incorporation of latest
developments in adaptive sensing, uncertainty quantification, and predictive science. On the other hand, the better
personalized recommendation the APP can offer, the better user engagement, that will ultimately translate into a
long-term adaption of the APP by a wide range of users.

Data Collection

We use the NREL OpenPATH platform for this data collection. This open-source platform collects a complete
snapshot of your travel and uses it to estimate your individual transportation carbon footprint and compare it
against US 2030 and 2050 carbon-reduction goals. It also computes and publishes aggregate metrics around mode
share and distance traveled.

Figure 1 Website to recruit the participants to join our mobility data collection study using

NREL OpenPATH.
OpenPATH Demographics
Survey
¥ Personal Level Information W Household Level Information w Job Related Information

*How old are you?

*Including yourself, how many people live in  * What days of the week do you typically work

<16 years old
16~ 20 Id .
yeama your home? from home or an alternate location?
21~ 25 years old
26 ~ 30 years old 1 Please select all that apply.
31~ 35 years old
2 Monday
36 ~ 40 years old
41 ~ 45 years old 3 Tuesday
46 ~ 50 years old 4 Wednesday
51~ 55 years old
56 ~ 60 years old 5 Thursday
61~ 65 years old 6 Friday
65 Id
" eoyearso 7 Saturday
Prefer not to say
More than 7 Sunday
[ Ner ] Prefer not to say Prefer not to say

Figure 2 Some question examples in the survey, including personal level, household level
and job related information, in NREL OpenPATH.
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We customize the OpenPATH app interface (https://github.com/e-mission/nrel-openpath-
deploy-configs/blob/main/configs/uw-prs.nrel-op.json) to support both the collection and
visualization of the data relevant to our study. Upon account creation, participants are prompted to
complete a demographic survey, which gathers personal, household, and job-related information.
Example survey questions are shown in Figure 2.

Once the survey is completed, the mobile app begins collecting mobility data. The system
continuously tracks GPS coordinates and uses smartphone sensor data (e.g., accelerometer) to
automatically detect trips. It infers the trip’s start and end times, locations, routes, travel modes,
and distances. Participants can manually correct any misclassified transportation modes and
specify the trip purpose. The app interface for trip tracking and editing is shown in Figure 3. The
platform ultimately generates a travel diary, consisting of a sequence of trips and segments, each
labeled with inferred modes and user-confirmed purposes.

12/28/2023
To Label (33/33) v e
OibRDel ) Today c
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Purpose

Purpose

| == | eaflet | © Oy n'nStwvlm

— (9:24 AM
(Detected: @ 97% & 3% ‘*")
i Thu January 4, 2024

14 mi in 44 minutes
Southeast 20th Street,
Bellevue

Yesler Swamp Trail,
Seattle

Mode

Wi lazrs

i Purpose
W

- Leaflet | © OpenStree 10:08 AM

1:20 PM
fw) Gas Car Drove Alone

Ve Thu January 4, 2024
13.5 mi in 27 minutes

Purpose 2

Yesler Swamp Trail,
Seattle

152nd Avenue Southeast,
Bellevue

Mode
A el Gas Car Drove Al...
\ v
o Purpose
* m= | eaflet |© Opuniihm'tm
v [m) 2
=
Label Dashboard Profile

Figure 3 NREL OpenPATH APP interface.

We collected data from 10 participants, resulting in a total of 3,376 trips recorded between
March 2024 and May 2025. Figure 4 illustrates the participant sign-up trend over the course of the
study. Figure 5 displays a bubble map of all trips with starting and ending points located within
the United States, with Washington State having the highest concentration of trips. Figure 6 shows
a portion of the trip density heatmap for Washington State in May 2025, highlighting areas of
frequent mobility activity.
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Figure 4 Sigh-up trend of participants for our data collection study.
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Figure 5 Bubble map for all the trips in the U.S. from March 2024 to May 2025.

The platform also includes features for estimating energy consumption and carbon
emissions associated with each trip. NREL OpenPATH automatically calculates the energy usage
and carbon footprint for individual trip segments based on the detected travel modes. Figure 7

presents an example visualization from the user interface, showing daily energy usage and
emissions by week.

13



Edmonds

1874
( 779/ Alde Z Maltby
1 M(;unllake 26"‘16 P [\J
Terrace 0.8
: 178 \ d
¥ ¥

177 24 i

/
/ Kenmore ~ Bothell 235
Shoreling 1" Woodinville

x -
/ 183 —1
o = WA9
Lynnwood
-~ 187
= = 4

A
175 ¢4 Cottage Lake
0.6

2

IS

J
; 3
173 2

[

2=
S

1
= A 3 Unio|

1688
)

2 1
B ‘4 Lake Washington
e
= 167 o
220 et i 166

“ - - - .. .Seattle
N 1)
- 2 3838 e ™

N | ) 164A ~
|
l

0.2

Samm

4TINS,
Mercer Island

Mercer H \r 3

| ‘62 Tetandt 9 N 0

Figure 6 Density heatmap for some trips in the Washington state in May 2025.
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Figure 7 Daily energy and emissions by week in the user interface from NREL OpenPATH.
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RESULTS AND ANALYSIS
The summary statistics of our collected mobility data are available on the website (https://uw-prs-
openpath.nrel.gov/public/), where users can interactively adjust the metrics and time range to
explore different subsets of the data.

Figure 8 shows the distribution of trips by transportation mode. Out of 10 participants, 3
did not contribute usable mobility data, resulting in a total of 3,376 sensed trips from the remaining
7 participants. Among these trips, the majority (50.8%) were classified as "IN _VEHICLE" (e.g.,
private car, taxi), followed by 26.8% marked as "UNKNOWN", and 18.5% as "WALKING". A
smaller proportion was detected as "BICYCLING" and "OTHER". Of the 7 participants, 6
provided manual labels for their trips. For trips manually labeled by users (107 trips), "Walk"
accounted for 31.8%, followed by "Gas Car Shared Ride" (29.0%) and "E-Car Shared Ride"
(10.3%). Similar trends were observed in the 158 inferred trips, where "Walk" remained dominant
at 32.3%, and "Gas Car Shared Ride" at 28.5%. When the APP’s automatically detected labels are
incorrect, users may voluntarily correct them, though this correction is not required. The results
highlight a significant discrepancy between sensed and manually labeled data, suggesting that the
app has limitations in accurately distinguishing between different transportation modes, e.g.,

walking and vehicular modes of travel.
= Walk == Hybrid Shared Ride
mmm Gas Car Shared Ride Bus
mmm E-Car Shared Ride Hybrid Drove Alone
E-Car Drove Alone mmm Other
mmm Taxi / Uber / Lyft

mm Walk = E-Car Shared Ride |
Inferred from prior labels mmm Gas Car Shared Ride  wmm Hybrid Shared Ride
158 trips (4.68%) E-Car Drove Alone Bus
from 6 testers and participants mmm Taxi/ Uber / Lyft mmm Other
= IN_VEHICLE
= UNKNOWN
mm WALKING
mmm BICYCLING
=1 OTHER

Last updated 2025-05-31T04:01:15.040499+00: 00
[=]

Labeled by user
107 trips (3.17%)
from 6 testers and participants

93 %
(10)

127 %
(20)

Sensed by OpenPATH
3376 trips (100%)
from 7 testers and participants

Proportlon (Count)
Figure 8 The number of trips for different transportation modes.

Figure 9 presents the total mileage distribution by transportation mode. In the sensed data,
the largest share of distance was covered by "AIR_OR_HSR" (72.8%), indicating that long-
distance travel modes contributed significantly to overall travel miles, despite being low in trip
count. This is followed by "IN VEHICLE" (22.1%), while "UNKNOWN" and "OTHER" made
up 4.1%. In contrast, for user-labeled trips, most miles were associated with "Gas Car Shared Ride"
(55.7%) and "E-Car Shared Ride" (16.3%). Inferred labels produced a similar pattern. These
results suggest that while walking and short-range travel modes dominate in frequency, shared car
rides (particularly gas-powered) dominate in terms of mileage.

15


https://uw-prs-openpath.nrel.gov/public/
https://uw-prs-openpath.nrel.gov/public/

Labeled by user
107 trips (3.17%)
from 6 testers and participants

(64)

mmm Gas Car Shared Ride Bus
5 mmm E-Car Shared Ride mmm Taxi / Uber / Lyft
! o) E-Car Drove Alone === Other
mmm Hybrid Shared Ride
mmm Gas Car Shared Ride  mwmm Taxi/ Uber [ Lyft
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Figure 9 Total trip length (miles) covered by mode.

As shown in Figure 10, trip purpose data was provided for 107 user-labeled and 158
inferred trips. A substantial majority of trips fell under the "Other" category (60.9% user-labeled,
67.9% inferred), suggesting either a lack of predefined purpose options or unclear intent from
participants. Among the clearly labeled purposes, "Home" trips were the next most common (11.2%
user-labeled), followed by "Meal", "Recreation/Exercise", and "Shopping" trips. The diversity of
trip purposes reflects the general, everyday travel behaviors of participants.

Other To Work
Home mmm Access Recreation

Labeled by user
107 trips (3.17%) Meal mm At Work
from 6 testers and participants Recreation / Exercise  mmm Pick-up / Drop off Item
Shopping School
8 ] 8
=1

== QOther School
Inferred from prior labels == Home To Work
158 trips (4.68%) mmm Pick-up / Drop off ltem  mmm Recreation / Exercise
from 6 testers and participants = Meal Shopping

Last updated 2025-05-31T04:01:18.823740+00.00
o o o
~ =3

Proportion (Count)

Figure 10 The number of trips by travel purpose.

Figure 11 shows the distribution of trips by weekday. The number of sensed trips peaked on
Saturday (over 600 trips) and Friday, with the fewest occurring on Monday. This pattern reflects
higher mobility during weekends, potentially due to non-work-related activities, while weekdays,
especially Mondays, saw fewer trips, likely due to work-from-home schedules or reduced mobility
at the start of the week.
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Figure 11 The number of trips by weekday based on 3,367 trips from 7 participants.
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Despite the utility of the OpenPATH platform for mobility data collection, our analysis
identified several recurring quality issues when comparing recorded trips to ground truth
annotations from partcipants. These discrepancies affect the accuracy of the trip segmentation,
mode detection, and location estimation. Below are the primary categories of data quality problems:
(1) Inaccurate Trip Segmentation
Several errors stem from the app’s inability to properly segment trips:

e Failure to detect trip end: In some cases, the app continued recording even after the user
had completed their trip, leading to overestimated durations and distances.
e Splitting one trip into two: Temporary stops due to traffic or user inactivity (e.g., stopping
for a minute) were incorrectly interpreted as separate trips.
¢ Combining two distinct trips into one: When there was a significant pause (e.g., one hour)
between trips, the app failed to segment them properly, merging them into a single
continuous trip.
(2) Location Detection Errors
The app occasionally misidentified the start and end locations. For example, the user traveled by
boat on Lake Washington, but the app inaccurately registered the start and end locations on land
due to limitations in GPS signal interpretation over water.
(3) Incorrect Mode Detection
Errors in transportation mode classification were frequently observed. For example, when the user
was walking, the app incorrectly detected the activity as biking. Such misclassifications suggest
that OpenPATH’s current sensing and classification algorithms may lack sensitivity to nuanced
movement patterns, particularly for distinguishing between walking, biking, and short car trips.
(4) Route Mapping and Distance Misestimation
Trip paths recorded by OpenPATH occasionally deviated significantly from actual routes. For
example, the app rendered the user’s path as a straight line rather than following the road network,
resulting in an underestimation of the trip distance and unrealistic trajectories.
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PERSONALIZED RECOMMENDATION SYSTEM WITH REWARDS

To enhance user engagement and support sustainable travel behavior, we designed a personalized
recommendation system that integrates reward-based incentives into mobility suggestions using
the NREL OpenPATH platform. This system offers users customized POI recommendations, such
as nearby parks, restaurants, gyms, or museums, paired with dynamic reward points to motivate
behavioral adoption.

Figure 12 illustrates the overall system flow. When a user opens the OpenPATH app at a
specific time and location, the backend recommendation engine suggests a personalized POI,
denoted as p, accompanied by a reward point offer . The user u can either accept or reject this
recommendation, generating a decision c. Each interaction is recorded as a tuple (u,t,/,p,7,c), where
t 1s the time and / is the location of the interaction.

Figure 12 The overview of the proposed personalized recommendation system for travel
location.

This process is designed to be iterative and adaptive. As the system collects more
interaction data, it updates its recommendation and reward prediction models to better reflect
individual user preferences. For example, if a user frequently accepts POI recommendations
offering moderate rewards for walking to nearby parks, the system will prioritize similar
suggestions in future interactions. Over time, the algorithm becomes increasingly personalized in
both the types of POIs it suggests and the magnitude of rewards offered.

Figure 13 showcases a sample question presented to users. The interface dynamically
highlights the recommended POI and the associated reward, prompting the user to make a decision.
This interaction is lightweight and embedded in the natural app usage flow, ensuring minimal
friction while collecting valuable feedback data. The integration of rewards serves dual purposes:
incentivizing exploration of recommended alternatives and enabling more accurate learning of user
travel preferences. Importantly, reward levels can be adjusted based on the likelihood of user
acceptance, offering higher incentives for unfamiliar or less convenient alternatives, and reducing

18



points for well-matched suggestions that users are likely to accept without additional motivation.
By tuning both the content (POI type) and framing (reward magnitude) of recommendations, the
system aligns individual incentives with broader transportation objectives, such as reducing car
usage or promoting visits to underutilized locations.
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Figure 13 An example recommendation with rewards for users to answer.

Ultimately, the goal of this recommendation system is to build a data-driven feedback loop:
better user data enables better recommendations, and better recommendations encourage more app
engagement and behavior change. This pilot implementation provides a foundation for scalable,
personalized interventions that can nudge individuals toward healthier, more sustainable travel
behaviors while respecting user autonomy and preferences.
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CONCLUSIONS

This pilot study demonstrates the feasibility and potential benefits of integrating mobility data
collection platforms with personalized recommendation systems to influence individual travel
behaviors. By leveraging the NREL OpenPATH platform, we collected detailed mobility traces
and self-reported annotations from a small cohort of users over an extended period. Despite several
data quality challenges including inaccurate trip segmentation, mode misclassification, and route
estimation errors, the platform proved capable of capturing rich spatiotemporal mobility data
essential for understanding user behavior. Our analysis of the collected data highlights diverse
travel modes and purposes, revealing key discrepancies between sensed and labeled trips that must
be addressed to improve system reliability. These findings underscore the importance of enhancing
sensing accuracy and user interface design to support more consistent and interpretable data
annotation.

On the recommendation front, we demonstrated that publicly available POI datasets like
Yelp can effectively serve as training grounds for baseline recommender models. Our experiments
with ItemKNN confirmed that users with richer mobility histories yield better recommendation
performance across precision, recall, and nDCG metrics.

Building on these insights, we proposed and prototyped a reward-based, personalized
recommendation system that dynamically adapts suggestions and incentives based on user
preferences and behavioral responses. This system lays the groundwork for a feedback loop in
which better data enables better recommendations, which in turn foster sustained user engagement
and more sustainable travel choices.

Future work will expand the user base, refine the sensing and labeling accuracy of the data
collection platform, and explore more sophisticated recommendation models, including
reinforcement learning and causal inference frameworks. Ultimately, this integration offers a
promising direction for developing user-centered, intelligent transportation systems that align
individual incentives with collective mobility goals.
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