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EXECUTIVE SUMMARY 

This report presents the outcomes of a pilot experimental study focused on predicting pedestrian 

flows through the integration of computer vision and deep learning methods, using video data 

collected from the Georgia Tech campus. The project seeks to advance urban sensing 

methodologies by evaluating the predictive capabilities of video-based pedestrian count and flow 

data using Convolutional Neural Networks (CNNs) and Graph Convolutional Networks (GCNs), 

with implications for future multimodal sensing applications. 

 

Two custom datasets, ASPED v.a and ASPED v.c, were collected and annotated for this study. 

ASPED v.a provides pedestrian count and directional flow annotations within a compact campus 

courtyard, while ASPED v.c extends the spatial scale across multiple campus intersections and 

pathways that have higher pedestrian volume. Pedestrian detection was performed using deep 

object detection models (Mask2Former and YOLOv8), and directional flow labels were annotated 

through zone-based transition tracking and re-identification algorithms. 

 

The analysis involved training CNN models for both flow estimation within a given input window 

and short-term prediction tasks. Results demonstrate that CNNs can accurately predict flow using 

limited count data, with marginal improvement when increasing the number of recorder features. 

Importantly, the inclusion of pedestrian count data, particularly when combined with flow data, 

substantially improved short-term forecasting performance. 

 

In the extended analysis using ASPED v.c, GCN models were implemented to capture spatial 

dependencies between distributed sensor nodes. Temporal lag optimization, based on geodesic 

distances and average walking speeds, was applied to account for delayed influence from distant 

recorder locations. Experiments showed that moderate lag configurations (e.g., 30 to 60 seconds) 

improved GCN performance, though the results exhibited over-smoothing effects in periods with 

high pedestrian flows. 

 

The study establishes a reproducible framework for evaluating the predictive utility of count-based 

pedestrian data and demonstrates that non-directional count sensors, such as audio-based recorders, 

can serve as alternatives to video-based systems in specific use cases. While the modeling 

framework shows promise, generalizability and long-term deployment remain as challenges for 

further research. Future work should investigate temporal modeling enhancements (e.g., LSTM or 

GRU layers) and infrastructure adaptations to support continuous, real-time data collection. 

 

These findings have practical implications for pedestrian mobility data collection and management, 

particularly in optimizing sensor placement, and enabling data-informed pedestrian flow 

management strategies in urban environments. 
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INTRODUCTION 
 

As cities worldwide place increasing emphasis on walkability, understanding pedestrian flow 

dynamics has become an essential component of urban planning. Pedestrian flow data offers 

valuable insights into the volume of inflow and outflow between locations, aiding in the 

identification of key routes, origins, and destinations. Such data can inform the optimization of 

pathways, crosswalks, and overall connectivity, while also guiding the strategic placement of 

amenities and shaping land use and zoning decisions.  

Beyond infrastructure design, pedestrian flow information supports congestion 

management by identifying bottlenecks where pedestrian and vehicular traffic may conflict, such 

as around transit hubs or event venues (American Planning Association, 1965). Analyzing 

pedestrian movement patterns also enhances public transportation planning, improves safety 

measures, and facilitates more effective emergency evacuation strategies (Ratti et al., 2006; Yabe 

et al., 2023). Moreover, pedestrian flow data provides valuable behavioral insights, such as peak 

travel times and responses to environmental conditions, offering a deeper understanding of how 

people navigate urban spaces. 

Traditional methods of collecting pedestrian movement data, such as smartphone-based 

tracking, have faced significant privacy concerns, particularly under regulations like the European 

General Data Protection Regulation (Van Steen et al., 2022). The use of smartphone data, while 

effective in capturing trajectories and demographic details, is often restricted or prohibitively 

expensive to access from private companies. In response to these challenges, alternative urban 

sensing approaches, such as infrared cameras, video surveillance, and other sensor-based 

techniques, have been developed. However, these methods also come with limitations, including 

high costs, data storage requirements, and a lack of directionality in tracking pedestrian movements 

(Han et al., 2024). Moreover, it is yet understudied how multimodal sensors can be distributed to 

effectively capture pedestrian flows. 

To address these limitations, this study explores the potential of using multimodal sensors 

by leveraging video-based pedestrian detection techniques. We present a framework for identifying 

optimal set of recorder features for predicting pedestrian flow at one location, that maximizes data 

utility while minimizing redundancy. Using deep learning techniques, such as Convolutional 

Neural Networks (CNNs) and Graph CNNs (GCNs), we demonstrate how pedestrian data derived 

from video and computer vision can serve not only as predictors of pedestrian movement but also 

as a methodological foundation for evaluating alternative sensing approaches. Specifically, the 

research objectives are to: 

(1) Establish a replicable process/framework for identifying the optimal set of sensor locations to 

efficiently estimate or predict pedestrian flow at a certain location and sensor network. 

(2) Experiment pedestrian flow estimation and prediction with video recordings collected from 

two areas with distinct scales in Georgia Tech Campus. 

(3) Investigate the plausibility of predicting pedestrian flow based on pedestrian count data, which 

has no directional information.   

While the experimental data and analysis in this study rely exclusively on video-based 
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recordings, the research also informs the future development of low-cost, scalable sensing systems, 

including audio-based recorders. Audio-based sensing offers several advantages: microphones are 

affordable, energy-efficient, and capable of capturing data over wide areas. Since sound waves can 

travel around obstacles, microphones can detect pedestrian movement in situations where other 

sensing methods may fail. The modeling framework and feature optimization strategies developed 

here provide valuable insights into how pedestrian count data, regardless of sensing mode, can be 

effectively used for pedestrian data collection. In this way, video-based experiments conducted in 

this project help illuminate the potential of audio sensors, particularly in settings where camera 

deployment may be restricted or constrained. 

This research contributes to the field by demonstrating that urban sensing based on 

pedestrian counts, when coupled with video-based flow data and deep learning techniques, can be 

used to predict pedestrian flow. Our findings suggest that pedestrian counting sensors, despite 

lacking direct directionality information, can serve as a valuable tool for pedestrian flow prediction 

when integrated with appropriate machine learning models. This approach has the potential to 

significantly reduce costs and expand pedestrian sensing capabilities in urban environments. 
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LITERATURE REVIEW 
 

The estimation and prediction of movement patterns in urban environments is a widely studied 

domain in transportation research. While vehicular flow estimation is a well-established domain, 

pedestrian detection and pedestrian flow modeling have rapidly evolved with the advancement of 

computer vision and deep learning techniques. This literature review highlights progress in three 

intersecting domains:  

(1) traffic flow estimation, primarily from video and sensor-based systems, 

(2) pedestrian detection models, with a focus on object recognition and tracking, and 

(3) pedestrian flow prediction, which integrates spatial-temporal modeling and multimodal sensing.  

 

(1) Traffic Flow Estimation 

Traffic flow estimation has been an actively studied domain in intelligent transportation systems, 

which enables real-time monitoring, adaptive signal control, and infrastructure planning. A 

dominant strand of research uses computer vision-based techniques applied to traffic surveillance 

videos. For example, Algiriyage et al. (2021) deployed YOLOv4 for vehicle detection and the 

SORT algorithm for object tracking in New Zealand’s road networks. The system accurately 

identified cars (mAP 96.94%) and estimated directional flows by tracking bounding boxes across 

user-defined boundaries (Algiriyage et al., 2021). However, its applicability was limited by its 

inability to handle multi-directional intersections, bias toward cars, and its unreliability of re-

identification during night-times. 

Similarly, several studies applied Faster Region-based-CNN (R-CNN) for vehicle 

detection combined with the tracking algorithms such as Camshift and Kalman filter (Ahmed et 

al., 2021; Xu et al., 2017; Y. Zhang et al., 2017). While Faster R-CNN is suggested as a promising 

method to detect and count vehicle flows as it is insensitive to traffic volume or illumination 

changes in the videos, their system still underperformed in complex scenes especially in the 

presence of diverse vehicle types, such as buses, trucks, motorcycles, and bicycles.  

Beyond video-based approaches, researchers have explored alternative sensor modalities 

and hybrid models to improve flow estimation accuracy in diverse environments. For instance, (Li 

et al., 2021) utilized Floating Car Data (FCD) which consists of GPS-based travel durations from 

vehicles. They applied Gaussian Process Regression (GPR) models to infer vehicle flows from 

estimated travel times provided by platforms like Google Maps. To enhance accuracy and 

adaptability, the study introduced both single-model and multi-model configurations, the latter 

using clustering techniques, such as k-means and Support Vector Machines (SVMs), to segment 

travel profiles into distinct "types of days" for model specialization. This multi-model structure 

reduced RMSE (root mean square error) significantly and allowed the system to generalize better 

acriss varying traffic conditions. The findings suggest the utility of non-visual data for traffic flow 

modeling, particularly in environments where occlusion, low lighting, or privacy concerns 

constrain video surveillance. 

Another growing area of interest is the use of fusion-based techniques that combine video 

with additional sensor data (e.g., radar, LiDAR, or loop detectors) to improve robustness. These 

multi-sensor systems often leverage deep learning models to learn complex temporal patterns 
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across modalities. However, challenges remain in aligning heterogeneous data streams, addressing 

latency, and maintaining scalability across regions with limited sensor infrastructure. 

Overall, the field has matured significantly in its ability to detect and count vehicles with high 

precision under controlled conditions. Still, generalizing across locations with multimodal traffic 

patterns, and achieving speed and density estimation remain active areas of research. New 

directions include computing for real-time deployment and transfer learning to adapt pre-trained 

models to new locations with minimal calibration. 

 

(2) Pedestrian Detection Models 

Pedestrian detection using computer vision is particularly relevant to applications in autonomous 

driving, city surveillance, and human mobility analytics. The field has evolved significantly from 

early handcrafted-feature approaches to deep learning-based systems. Traditional models such as 

Histogram of Oriented Gradients (HOG) combined with Support Vector Machines (SVM) (e.g., 

(Dalal & Triggs, 2005) laid the groundwork for pedestrian detection by encoding local gradient 

information and leveraging discriminative classifiers. These approaches, while computationally 

efficient, often struggled with scale variation, occlusion, and cluttered backgrounds. 

The introduction of Convolutional Neural Networks (CNNs) was a turning point. Models 

like Faster R-CNN (Ren et al., 2015), YOLO (Redmon et al., 2015), and SSD (W. Liu et al., 2016) 

dramatically improved detection accuracy and speed by learning hierarchical features directly from 

data. Faster R-CNN, for instance, incorporates region proposal networks (RPNs) for accurate 

object localization, while YOLO emphasizes real-time detection by framing detection as a single 

regression problem. These models have been widely adopted for pedestrian detection in 

surveillance footage and autonomous vehicles, often achieving high precision in urban 

environments. 

Recent advancements have focused on handling specific challenges, such as occlusion, 

small-scale detection, and dense crowds. Techniques include anchor-free detectors (e.g., 

CenterNet1, FCOS2), attention mechanisms, and multi-scale feature fusion (e.g., HRNet3). Datasets 

like Caltech Pedestrian (Dollar et al., 2009), CityPersons4, and JAAD5 have enabled benchmarking. 

Moreover, domain adaptation and synthetic data (Baul, 2021) are being explored to reduce the 

dependency on large, labeled datasets. Lightweight models and Transformer-based architectures 

(e.g., DETR6, ViT7 adaptations) are emerging for edge deployment and context-aware reasoning. 

Overall, pedestrian detection remains an active research area with ongoing challenges in 

generalization across environments and robustness under occlusion. The integration of temporal 

context, multi-modal data, and self-supervised learning promises to further advance the field. 

 

 
1 https://github.com/xingyizhou/CenterNet 
2 https://github.com/tianzhi0549/FCOS 
3 https://github.com/leoxiaobin/deep-high-resolution-net.pytorch?tab=readme-ov-file 
4 https://www.kaggle.com/datasets/hakurei/citypersons 
5 https://data.nvision2.eecs.yorku.ca/JAAD_dataset/ 
6 https://github.com/facebookresearch/detr 
7 https://github.com/lucidrains/vit-pytorch 
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(3) Pedestrian Flow Estimation and Prediction 

Pedestrian flow analysis has lagged compared to vehicular traffic modeling due to the unique 

complexities of pedestrian movement. Pedestrian trips are often more diverse in purpose, less 

structured in route choice, and frequently involve multi-modal journeys that incorporate walking 

as part of a larger trip. Additionally, the pedestrian networks in urban environments are inherently 

more complex, with a myriad of accessible pathways, including informal routes unavailable to 

vehicles. Pedestrians also tend to make unrecorded stops or pauses, which further complicates 

accurate flow analysis and prediction. 

With the rise of machine learning and deep learning, however, researchers have begun to 

apply these techniques to address the intricacies of pedestrian flow prediction. Recent advances in 

pedestrian flow modeling have shown increasing success using AI tools, particularly for spatial-

temporal prediction challenges. For instance, (Kitano et al., 2019) demonstrated the potential of 

AI in capturing these complexities, while (Ai et al., 2019) leveraged the power of deep learning, 

particularly CNNs for spatial feature extraction and Recurrent Neural Networks (RNNs) for 

modeling temporal dynamics. These advancements have significantly improved the predictive 

accuracy of pedestrian movement patterns. (Deo & Trivedi, 2021) proposed a novel grid-based 

prediction approach for multimodal trajectory forecasting, utilizing maximum entropy inverse 

reinforcement learning (MaxEnt IRL). Their model enabled more accurate predictions by learning 

policies in a grid-based framework, further enhancing the ability to forecast pedestrian and vehicle 

trajectories in complex environments. 

Graph Convolutional Networks (GCNs) have emerged as a powerful tool for modeling 

irregular spatial correlations, such as those present in pedestrian networks. GCNs excel in 

capturing the complex interactions between spatial nodes, where nodes represent areas and edges 

reflect road links or origin-destination trajectories, allowing for more effective processing of 

spatial relationships. Liu et al., (2021) applied GCNs to camera-detected pedestrian data, 

showcasing the model's ability to handle the spatial topology of road networks. (Xia et al., 2021) 

expanded on this work by developing a 3-dimensional GCN (3DGCN) model to address dynamic 

spatial-temporal graph prediction challenges, incorporating Point-of-Interest (POI) data to further 

improve prediction accuracy. (Sun et al., 2022) introduced a hybrid model combining GCN and 

fully connected neural networks with a multi-view fusion module, which adeptly captured both 

spatial correlations and crowd flow dynamics. 

In addition to spatial modeling, researchers have begun integrating external factors such as 

weather conditions and inter-regional traffic to improve pedestrian flow prediction. Zhang et al. 

(2017) and (D. Zhang & Kabuka, 2018) emphasized the influence of weather and day-specific 

effects on pedestrian dynamics. (Lin et al., 2019) introduced the DeepSTN+ model, which 

integrated POIs and temporal factors to better model spatial dependencies. (J. Zhang et al., 2018) 

further developed the ST-ResNet model, incorporating both weather and time data to predict crowd 

inflow and outflow. 

A variety of data sources have been employed to enhance pedestrian flow predictions, 

including mobile GPS data, social media, and data from bike-sharing and taxi systems (Zhang et 

al., 2017; Lin et al., 2019; Sun et al., 2022). However, accessing these data sources for effective 

pedestrian mobility prediction remains a significant challenge due to privacy concerns and the 

need for collaboration with private companies. Considering these challenges, the use of alternative 

data sources, such as the video-based pedestrian count dataset explored in this study, offers a 
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promising solution. 

 

DATA 
 

(1) Data Collection  

 

We collected and utilized two versions of multimodal pedestrian detection dataset, named Audio 

Sensing for PEdestrian Detection (ASPED) v.a and v.c (Seshadri et al., 2024). This dataset contains 

audio, video recordings, and number of pedestrians passing by each designated locations at one 

frame per second rate, annotated based on the video recordings. The data collection sites are 

demonstrated in Figure 1.  

For this study, we use a part of ASPED v.a, which focuses on a Cadell Courtyard site in 

Georgia Tech Atlanta campus. ASPED v.c is an expanded version of ASPED v.a, which comprises 

of larger pedestrian network and volume. We publicized the first set of data, ASPED v.a8, in 2024 

and plan to publicize the expanded version, ASPED v.c, later this year as it is still in the process 

of synchronizing between video and audio files. 

 

Figure 1. Data Collection Sites for ASPED v.a & ASPED v.c,  

Georgia Tech Campus in Atlanta 

Since this project only utilizes the video files in the dataset, we only elaborate on the device 

settings of the cameras and the way we annotated pedestrians from videos. We used GoPro HERO9 

Black cameras with USB pass-through doors connected to Anker PowerCore III Elite 26K power 

 
8 https://urbanaudiosensing.github.io/ASPEDa.html 

ASPED.a “Cadell Courtyard”

ASPED.c “Tech Green”

https://urbanaudiosensing.github.io/ASPEDa.html
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banks for longer recording (see Figure 2). The power banks were enclosed in Seahorse 56 OEM 

Micro Hard Cases, modified with a drilled hole, a Wraparound Plastic Submersible Cord Grip for 

the cord, and a 90-degree USB connector for better positioning. For synchronizing time across 

cameras, we displayed the time from www.time.gov on a mobile device to each camera after the 

recording started, followed by a whistle blow to mark the exact time, aiding in syncing with the 

audio recorders. In larger areas, multiple whistle signals were used.  

 

Figure 2. Video Camera Installed on a Campus Street Light 

Due to the battery life of the devices, recording sessions were limited to approximately 2 

days each. To extract the pedestrian count per video frame, we use the Mask2Former model (Cheng 

et al., 2021) to detect people per frame at 1 frame per second. We use the specific implementation 

by OpenMMLab 9  which was trained on the Microsoft COCO dataset. This algorithm was 

parametrized with a prediction threshold of 0.7. For each frame of the video, the algorithm 

identified the ‘person’ class and generated bounding boxes around them (Figure 3). Subsequently, 

every frame was annotated with the number of pedestrians detected if the bottom-center point of 

pedestrian bounding boxes intersected with the 9m buffer around the recorders; otherwise, it was 

labeled as no-pedestrian present. 

 

 
9 openmmlab.com, last access date Sep 5, 2023 
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Figure 3. Pedestrian Count Detection using Mask2Former Model 

(2) Summary of ASPED v.a  

The ASPED v.a dataset consists of a total of 3,406,229 video frames, collected over five separate 

sessions, each lasting approximately two days. Figure 4 shows the distribution of detected 

pedestrian counts in each frame. Since our study focuses on estimating pedestrian flow from data 

without directional information (e.g., audio-based sensors), we restricted the dataset to include 

only frames recorded between 7 AM and 7 PM, which corresponds to the hours of peak pedestrian 

activity on campus. After filtering, the dataset contains 170,281 frames. 

 

Figure 4. Hourly Distribution of Pedestrian Counts, ASPED v.a 
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Figure 5. Data Collection Site (ASPED v.a, Cadell Courtyard) 

While ASPED v.a provides pedestrian count data at specific locations, it lacks detailed 

pedestrian flow information, meaning it does not capture the number of pedestrians moving in 

different directions. To label pedestrian flow, we used the raw video recordings from the 

surveillance camera. Prior to processing, all video files were standardized using FFmpeg to remove 

audio tracks and ensure consistent formatting. For efficiency, we focused on predefined regions-

of-interest (ROIs) by cropping the video frames to only include these areas. The video frames were 

then upscaled by a factor of 3 to enhance detection performance for pedestrians at greater distances. 

 

Figure 6 Sample of upscaled ROI of a frame, where five pedestrians are detected moving 

upwards (yellow to blue polygon) 

To estimate pedestrian flow, we employed a basic re-identification method, which involves 

tracking individuals across multiple frames. Similar to the pedestrian detection workflow, we 

processed the videos using OpenCV, with human detection performed using the YOLOv7 model, 

which provided bounding boxes for detected individuals in each frame. We calculated the bottom-

center point of each bounding box and checked its position relative to the polygon masks to 
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determine if a person crossed one of the predefined regions (UP or DOWN). Specifically, the 

algorithm tracked individuals who crossed from the bottom ROI (yellow polygon in Figure 6) to 

the top ROI (blue polygon in Figure 6), labeling them as moving UP, or the opposite direction, 

labeling them as moving DOWN. The incremental (frame-by-frame) and cumulative counts of 

people moving up and down across all processed videos were stored in a CSV file.  

Table 1. Data Description  

 Min Max Mean Median 

Pedestrian Count within 

9m Buffer 

Recorder 1 0 19 0.35 0 

Recorder 2 0 13 0.19 0 

Recorder 3 0 20 0.33 0 

Recorder 4 0 12 0.06 0 

Recorder 5 0 12 0.19 0 

Recorder 6 0 17 0.20 0 

Pedestrian Flow Up 0 4 0.01 0 

Down 0 4 0.01 0 
 

 

Figure 7. Hourly Up/Down Flow Distribution at ASPED v.a Pathway 
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(3) Summary of ASPED v.c  

The recording devices were set up in five locations for four sessions on the Georgia Tech campus 

around the Tech Green area, in which we named as Intersection B, Intersection C, Intersection D, 

Path1 and Path2. For our experiments in this report, we specifically used the pedestrian counts 

within a 9-meter buffer (Figure 8) annotated based on video. Pedestrian counts were captured via 

a surveillance camera, with footage recorded at a frame rate of thirty frames per second.  

 

Figure 8. Data Collection Site (ASPED v.c, Tech Green) 

Table 2: Data Collection for ASPED v.c Sessions 

Session  Days 

Session_02152024 15th February to 17th February 2024 

Session_02292024 29th February to 2nd March 2024 

Session_10222024 22nd October to 24th October 2024 

Session_10292024 29th October to 31st October 2024 

 

The total frames for each scene are mentioned in Table 3, where we have concatenated values 

from all the sessions for that scene. 
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Table 3 Data Summary for ASPED v.c Locations 

Scenes Total Frames 

Intersection B 613,929 

Intersection C 609,893 

Intersection D - 

Path1  582,829 

Path2 471,448 

 

Figure 9. Hourly Distribution of Pedestrian Counts in Intersection B, ASPED v.c 

Since the ASPED v.c dataset, like ASPED v.a, does not contain detailed directional 

pedestrian flow information, we used the video recordings to generate flow labels. The videos were 

preprocessed using the same standardization pipeline: audio tracks were removed, and consistent 

formatting was ensured using FFmpeg. To optimize detection, we cropped frames to focus only on 

predefined regions of interest (ROIs) and upscaled them to improve the visibility and detectability 

of pedestrians, especially those farther from the camera. 

To detect pedestrians in video frames, we utilized the YOLOv8n model with a confidence 

threshold of 0.5. The model outputs bounding boxes around detected individuals, these are used to 

isolate regions of interest (ROIs) within each frame. These ROIs are passed to a feature extractor 

that helps with tracking. The feature extraction process involves cropping the detected bounding 

box regions from the frame, resizing them to 224×224 pixels, normalizing pixel values, and 

converting the cropped images into tensors. These preprocessed tensors are then passed through a 

ResNet-50 model (with the final classification layer removed) to generate high-dimensional 

feature embeddings that represent the visual characteristics of each pedestrian. The resulting 
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feature vectors are converted to NumPy arrays and used along with the bounding boxes for the 

DeepSort tracking algorithm. DeepSort leverages both these motion and appearance cues to 

maintain consistent identities for pedestrians across frames for efficient path tracking over time. 

Further, to detect the flow of pedestrians: we divided each scene into zones and then tracked 

the motion of people moving from one zone to another (Figure 10). We then track pedestrian 

movements, or flows, between defined zones within each intersection. These zones were decided 

based on the visual layout and common movement paths observed in the footage. These zones 

were manually annotated using polygon coordinates to represent regions of interest. Once these 

zones were established, pedestrian flow was measured by tracking transitions between them.  

          

Figure 10: Zone labelling in each scene 

For example, at Intersection B, six distinct pedestrian flows are identified based on 

directional movement between zones: from Zone A to Zone C, Zone C to Zone A, Zone A to Zone 

D, Zone D to Zone A, Zone C to Zone D, and Zone D to Zone C.  
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For each frame, once pedestrians were detected using the YOLOv8n object detection model 

they were tracked across time using the DeepSORT algorithm. Each detected person was assigned 

a unique ID, and their movement was continuously monitored across successive frames. 

To determine which zone a pedestrian was in, the center point of their bounding box was 

computed and checked against the defined zone polygons using OpenCV’s pointPolygonTest. This 

allowed us to identify whether a person was located in Zone A, Zone B, or neither at any given 

time. The previous zone associated with each track ID was stored, and if the current zone differed 

from the previous one, the system recorded a directional transition (e.g., from Zone A to Zone B). 

These transitions were used to increment corresponding flow counters; both for the current frame 

and the overall video session. This ensured that each transition was only counted once per unique 

movement. For example, in 

Figure 11 a person with Track ID 367 was initially in Zone A and later detected in Zone B, this 

would be logged as an A_to_B transition. Transition A_B: count increased from 10 to 11 from 

frame 708 to frame 709. 

This transition would not be recounted unless the same person moved back and forth again. 

The system visualized this information by color-coding bounding boxes, drawing motion trails, 

and displaying real-time transition tables on the output video. Additionally, all statistics such as 

zone occupancy, frame-wise transitions, and cumulative flows were logged to a CSV file for 

further analysis. Similar approach was used in all the scenes to determine the pedestrian movement 

across zones. This zone-based transition tracking framework enabled us to generate reliable 

directional flow labels for pedestrian movement in the absence of explicitly labeled data in the 

original ASPED.c dataset. 
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Figure 11. Example of Pedestrian Flow Detection in Path 1 

Figure 12-14 indicate the hourly flow of pedestrians across the zones within different scenes. At 

Intersection B, the highest pedestrian activity is observed between 12 PM and 6 PM, with counts 

ranging from 300 to 1000. The peak consistently occurs around 12 PM, reaching a maximum of 

1100 pedestrians on 23rd October at 6PM. In contrast, nighttime hours (12 AM to 6 AM) show 

negligible or no activity. Similarly, Intersection C experiences substantial flow between 12 PM 

and 6 PM, typically ranging from 50 to 600 pedestrians. Notably, on February 15th and 16th, the 

high-flow window extends until 8 PM, while the maximum pedestrian count of 600 is recorded on 

October 23rd at 6:15 PM. Night hours (12 AM to 8 AM) remain largely inactive in this region as 

well. 

For Path 1, elevated pedestrian flow is generally seen between 12 PM and 8 PM, with 

volumes ranging from 20 to 400. The most significant surges occur on October 23rd at 7 PM (600 

pedestrians) and October 30th at 12 PM (450 pedestrians). As with other locations, activity is 

minimal or absent between 12 AM and 6 AM. In the case of Path 2, high flow is typically recorded 

between 12 PM and 6 PM, except on October 23rd, where it persists until 8 PM. Pedestrian counts 

here range from 50 to 500, with peak activity observed on October 23rd and 30th, both reaching 

around 500 pedestrians. 

Overall, Intersection B emerges as the most active region, consistently recording the 

highest pedestrian flow across all sessions when compared to other intersections and paths. 

Additionally, the evening of October 23rd stands out as a particularly busy period, with all scenes 

exhibiting peak pedestrian activity during that time. 
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Figure 12: The hourly flow trends for Intersection B across different sessions 
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Figure 13: The hourly flow trends for Intersection C across different sessions 

 

Figure 14:The hourly flow trends for Path1 across different sessions 
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Figure 15:The hourly flow trends for Path 2 across different sessions 
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(4) Adjacency Matrix  

We also collected coordinates of sensor locations and created an adjacency matrix to feed into 

the Graph Convolutional Network models. This matrix encodes spatial relationships within the 

physical sensor network by defining weights for different features based on pairwise distances 

between recorders. 

Each entry 𝐴𝑖𝑗in the matrix was calculated using a Gaussian kernel function: 

𝐴𝑖𝑗 = exp (
[𝑑𝑖𝑠𝑡(𝑣𝑖 , 𝑣𝑗)]2

𝜃2
),  

Where 𝑑𝑖𝑠𝑡(𝑣𝑖 , 𝑣𝑗) denotes the Euclidean distance between sensors 𝑖 and 𝑗, and θ represents the 

standard deviation of all pairwise distances in the network. 

To sparsify the graph and reflect the practical limitations of physical influence, we applied a 

distance threshold, 𝑘, defining the final adjacency matrix as: 

𝐴𝑖𝑗 =  {
𝐴𝑖𝑗     𝐴𝑖𝑗  > 𝑘

0      𝐴𝑖𝑗  ≤ 𝑘
 

𝜃: 𝑠𝑡𝑑. 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑟 𝑖 𝑎𝑛𝑑 𝑗 

We experimented with different cut-offs, 𝑘 ∈ {20, 30, 40, 50}. If 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 > 𝑘, we assume that 

the edge does not exist or does not act as a link (M. Liu et al., 2021). 
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ANALYSIS 
 

In this section, we introduce our experimental setup, framework, and step-by-step processes. The 

experiments are introduced in two subsections: (1) Pedestrian Flow Estimation and Prediction 

using ASPED v.a, and (2) Pedestrian Flow Estimation with ASPED v.c dataset.  
 

Pedestrian Flow Estimation and Prediction using ASPED v.a  

In the first experiment, we trained a series of models using data collected from six sensor locations 

in ASPED v.a. dataset. The following diagram illustrates our experimental workflow and 

methodological design (Figure 17-17). 

 

Figure 16. 5-seconds Aggregation of Data 
 

 

(1) Data Preprocessing  

Pedestrian count data was aggregated into 5-second intervals, where the counts at each location 

were averaged, and the flow information was summed. This method accounts for the likelihood of 

overlapping pedestrian counts across frames, while ensuring that flow data is handled distinctly 

(Figure 16).  

To capture temporal dependencies, the data was transformed into sequences. Each 

sequence was made up of 10 consecutive rows of features, representing 50 seconds of aggregated 

data. The target for each sequence was the sum of pedestrian flow over that 50-second window, 

enabling the model to estimate the flow based on the counts in that period. 

The dataset was then split into training, validation, and test sets using a 6:3:1 ratio to allow 

for a robust evaluation of the models. After splitting, the training and validation sets were balanced 

to address the significant number of frames showing zero pedestrian flow. Without balancing, the 

model could become biased toward predicting zero flow to minimize error, because Cadell 
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Courtyard average flow is near 0 (Table 1). To mitigate this, sequences with zero pedestrian flow 

were reduced to half the size of those with non-zero flow, ensuring the model learned to predict 

instances of pedestrian movement accurately. This balanced approach improves the model's ability 

to predict non-zero pedestrian flow events, providing more meaningful predictions. 

(2) Model Training.  

To estimate pedestrian flow information (i.e., the number of pedestrians moving up and down) 

based on pedestrian counts within 9-meter buffers around recorders, we first employed a 

Convolutional Neural Network (CNN) model designed to capture spatial dependencies in 

pedestrian flow data. The CNN model processes spatial patterns by applying convolutional filters, 

which extract spatial features from the pedestrian count data, allowing the model to identify 

variations in flow across different locations. 

We train the CNN model for two specific purposes: 

 (1) Flow Estimation Within the Input Period: This model estimates the pedestrian flow (up and 

down) based on pedestrian counts collected during the same 50-second input period. The CNN 

extracts spatial features from the count data to predict the flow directly within that interval. 

(2) Short-Term Flow Prediction: This model predicts pedestrian flow for the next 5 seconds 

following the initial 50-second input period. The CNN utilizes the spatial features extracted from 

the pedestrian count data in the preceding 50 seconds to forecast the short-term pedestrian 

movement. 

 

Figure 17. Workflow of Pedestrian Flow Prediction Using ASPED v.a 
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By utilizing CNN, we aim to balance spatial feature extraction with temporal dependency 

management in the short-term forecasting task. This approach highlights the effectiveness of 

CNNs in capturing the spatial relationships inherent in pedestrian count data, demonstrating the 

potential for these models to predict both immediate and short-term pedestrian flow efficiently. 

 

Extended Experiments with ASPED v.c  

 

(1) Model selection.  

The ASPED v.c dataset includes a larger and busier pedestrian network. To better capture the 

spatial relationships among distantly placed sensors, we incorporated Graph Convolutional 

Networks (GCNs). These models use sensor adjacency matrices weighted by physical distance, 

enhancing the model’s ability to learn from network topology.  

(2) Temporal Lag Optimization for Distributed Sensors 

Given the increased distances between sensors in ASPED v.c, we implemented a systematic 

procedure to determine appropriate temporal lags for incorporating information from sensors that 

are placed far away. Although the optimal temporal lag selection would be unique to each sensor 

and not be generalizable, our pipeline provides a replicable method for determining lags in other 

spatially distributed settings. 

As a case study, we targeted Intersection B as the prediction location. Data from sensors at 

Intersection B were used with no lag. However, data from sensors at Intersection C and Path 1, 

located approximately 30 and 27 meters away respectively, were tested with lag windows of 10–

20, 20–30, and 30–40 seconds. These lag values were derived based on average walking speeds 

and geodesic distances between locations.  
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Figure 18. Workflow for Flow Estimation and Prediction Using ASPED v.c 
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Evaluation Metrics and Comparative Analysis.   

Model performance is evaluated on the test set using standard regression metrics such as Mean 

Absolute Error (MAE) and Root Mean Square Error (RMSE). We also consider R-squared (R²) to 

assess the goodness of fit for each model. After training, we compare the predictive accuracy and 

efficiency of each model. This comparison highlights the effectiveness of CNN modeling 

components, as well as the impact of combining them in hybrid models. 

By experimenting with these models, we aim to identify the best approach for predicting pedestrian 

flow based on both spatial and temporal patterns. 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|

𝑛

𝑖=1

    

When 𝑛 is the number of observations, 𝑦𝑖 is the actual value and 𝑦𝑖̂ is the predicted value. MAE 

measures the average magnitude of the errors in prediction. 

𝑅𝑀𝑆𝐸 =   √
1

𝑛
∑(𝑦𝑖 − 𝑦𝑖̂)2

𝑛

𝑖=1

  

RMSE is a root of MSE, which gives a sense of how large the errors are, in a more interpretable 

way, as it is in the same unit as the original data. 

𝑅2 = 1 −
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦𝑖̅)2𝑛
𝑖=1

 

R-square measures how much of the variance in the data is explained by the model. A value close 

to 1 indicates a good fit. 
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RESULTS 

Pedestrian Flow Estimation and Prediction with ASPED v.a  

(1) Estimating Pedestrian Flow Using Pedestrian Count Data 

The Convolutional Neural Network (CNN) model successfully estimated pedestrian flows (both 

up and down flows) based on pedestrian count data collected in 5-second intervals across 10 

chunks during the input period (Table 4, 

Figure 19). The results indicate that even with a limited number of recorder locations, the model 

maintained a reasonable level of accuracy. In fact, expanding the sensor network to include more 

locations did not significantly enhance model performance (Table 4). The highest R-squared value 

of 0.70 and the lowest MAE of 0.04 was achieved using data from three locations, indicating that 

additional recorders beyond this number may not substantially improve model accuracy. The MAE 

0.04 can be reverse min-max scaled into an actual value of 0.01 persons, indicating a good model 

fit. 

Figure 19. Estimating Pedestrian Flow at Peak time (12-1 PM) using Pedestrian Counts 

from Two Locations using Convolutional Neural Network 
 

Table 4. Convolutional Neural Network Performance in Estimation Flow from Pedestrian 

Counts, with different number of features 

 MAE RMSE R2 

2 Locations, 1 Time 0.09 0.14 0.61 

3 Locations, 1 Time 0.04 0.10 0.70 

4 Locations, 1 Time 0.07 0.10 0.63 

6 Locations, 1 Time 0.06 0.10 0.64 
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(2) Short-Term Prediction of Pedestrian Flow 

In this experiment, we predict the pedestrian flows based on the pedestrian count and flow data of 

the previous 10 chunks (i.e., predicting flows of the next five seconds based on the previous 50 

seconds). We also examined whether short-term predictions of pedestrian flow could be improved 

by integrating pedestrian count data. The models tested included using only flow data, only count 

data, and a combination of both.  

 The findings show that when only flow data was used, the model produced a MAE of 0.05 

and RMSE of 0.07 (Table 5). Adding pedestrian count data as an additional feature significantly 

improved the model's performance, reducing the MAE to 0.02 and the RMSE to 0.05. Moreover, 

combining both flow and count data further enhanced the model's predictive accuracy, resulting in 

the lowest MAE (0.01) and RMSE (0.04), and the highest R-squared value (0.29). This suggests 

that integrating pedestrian count data with flow information provides a more comprehensive and 

accurate short-term prediction of pedestrian flows. 

Table 5. Convolutional Neural Network Performance in Short-Term Prediction of 

Pedestrian Flow 

 MAE RMSE R2 

Flow Data 0.05 0.07 - 

Count Data 0.02 0.05 0.16 

Flow + Count Data 0.01 0.04 0.29 

 

The results of the study indicate that the Convolutional Neural Network (CNN) model 

performed well in estimating pedestrian flows using pedestrian count data, showing reasonable 

accuracy even with a limited number of recorder locations. While expanding the number of sensors 

slightly improved the model’s performance, it did not lead to a substantial increase in accuracy 

beyond a certain point. This suggests that a minimal, yet strategically placed network of sensors 

could be sufficient for pedestrian flow estimation in urban environments. 

The short-term forecasting results revealed that integrating pedestrian count data with flow 

data significantly improved model performance. Short-term prediction models demonstrated that 

combining pedestrian count data with flow data provides a more comprehensive understanding of 

pedestrian dynamics. This indicates that using both data types together is more effective than 

relying on either alone. 

Despite attempts to apply the Graph Convolutional Network (GCN) model, it did not 

outperform the CNN model. This outcome may be due to the nature of the ASPED v.a data. Unlike 

traditional transportation networks where nodes (intersections) are usually connected by edges 

(streets), the pedestrian count data collected on the ASPED v.a site does not inherently follow a 

network structure as it is collected in one courtyard. Recorder locations are relatively close to each 

other compared to existing studies where they found GCN useful, which makes the use of GCNs 

less effective compared to CNNs that can process spatially localized features independently of 

network connections. 
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While no existing study matches the exact setup of this experiment of estimating and predicting 

pedestrian flow using count data from multiple recorders, we can draw a partial comparison to a 

study conducted in Shenzhen, China by Liu et al. (2021). (Other related papers introduced in the 

literature review, except Liu et al. did not report comparable metrics, such as normalized RMSE 

or R-square. Most of them only reported the actual RMSE, which scale-dependent.) Liu et al. 

(2021) involved 25 surveillance cameras installed across a large, busy commercial district known 

as Dongmen walking street. Unlike our study, they focused solely on predicting pedestrian counts 

(not flows) for the next minute using aggregated data from the previous minute. Their reported 

GCN model performance varied by time of day, with R-squared values ranging from 0.67 

(weekday mornings) to 0.94 (weekend evenings). These higher scores likely reflect the much 

larger pedestrian volumes and broader spatial extent of their study site. 

Additionally, Liu et al. found that model performance significantly dropped during periods of 

lower pedestrian density, as indicated by a strong positive correlation between crowd size and 

RMSE. This finding aligns with our observation that predictive performance is more limited in 

lower-flow periods. Given the significantly smaller scale and volume of pedestrian activity at our 

site, the relatively modest R-squared values in our study are expected. Nonetheless, our results 

provide insights into flow estimation in smaller-scale or resource-constrained settings. 
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Pedestrian Flow Estimation with ASPED v.c; Case Study of 

Intersection B, Pedestrian Flow from Clough to Intersection C  

 

We extend the experiments using ASPED v.c, a new dataset collected in the Tech Green area, 

characterized by a larger network and higher pedestrian volumes. In this stage, we experiment with 

different model configurations (CNN, GCN) and temporal lags, which are introduced to account 

for the varying spatial distances between sensors and the target prediction location.  

 

(1) Convolutional Neural Network (CNN) 

We first directly used the count values by grouping them into 10 second sequences. We conducted 

experiments using only flow data, only count data, and a combination of both. A CNN model was 

employed for these experiments, with Smooth L1 loss as the loss function. The analysis examined 

whether short-term predictions of pedestrian flow could be improved by integrating pedestrian 

flow data with the count data.  

The findings show that when only flow data was used, the model produced a MAE of 0.19 

and RMSE of 0.22 (Table 6). Given that the range of target flow data is [0, 26], the MAE could be 

reversed min-max scaled to 4.94 persons. However, the negative R-square value suggests that the 

prediction does not explain the variance of the target data very well.  

Adding pedestrian count data as an additional feature significantly improved the model's 

performance, reducing the MAE to 0.14 and the RMSE to 0.18. Moreover, combining both flow 

and count data further enhanced the model's predictive accuracy, resulting in the lowest MAE 

(0.14) and RMSE (0.18), and the highest R-squared value (0.14). The 0.14 MAE is 3.64 persons. 

This suggests that integrating pedestrian count data with flow information provides a more 

comprehensive and accurate short-term prediction of pedestrian flows, reducing the MAE by 

26.32%.  

Table 6. Convolutional Neural Network Performance in Short-Term Prediction of 

Pedestrian Flow 

 MAE RMSE R2 

Flow Data 0.19 0.22 -0.31 

Count Data 0.14 0.18 0.09 

Flow + Count Data 0.14 0.18 0.14 

From this experiment, we observed that combining flow and count data yields better results 

compared to using them individually. This suggests that including pedestrian counting sensors 

combined with trajectory tracking can improve the pedestrian flow prediction accuracy.  

We conducted further experiments using the combined flow and count incorporating 

lagged count values, considering that the recorders are positioned at a distance from the actual 

scene where flow predictions are being made. The amount of lag introduced was determined based 

on the relative distance of each recorder from the scene, with greater lag assigned to those farther 

away. For example, Path 1 and Intersection C are around 30 meters away from the Intersection B 
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(location where we are predicting flow at). Thus, we experimented with the pedestrian count and 

flow data collected from those areas from certain number of seconds previous to the frame that we 

are predicting.  

Table 7. Convolutional Neural Network Performance in Short-Term Prediction of 

Pedestrian Flow with lagged recorder counts 

P1 Recorder lag 

(seconds)  

Intersection C recorder 

lag (seconds) 

Training Results Validation Results 

  MAE RMSE R^2 MAE RMSE R^2 

10 10 0.140 0.175 0.17 0.206 0.245 -0.05 

20 10 0.142 0.176 0.17 0.193 0.233 0.06 

20 20 0.140 0.176 0.16 0.200 0.239 0.01 

30 20 0.141 0.178 0.14 0.207 0.247 -0.06 

30 30 0.147 0.183 0.10 0.216 0.257 -0.15 

40 20 0.137 0.172 0.20 0.191 0.232 0.06 

40 30 0.141 0.178 0.14 0.212 0.253 -0.11 

40 40 0.139 0.174 0.17 0.202 0.242 -0.03 

60 30 0.128 0.162 0.28 0.184 0.226 0.11 

90 50 0.135 0.169 0.23 0.192 0.232 0.06 

 

The results (Table 7. Convolutional Neural Network Performance in Short-Term Prediction of 

Pedestrian Flow with lagged recorder counts suggest that for predicting the pedestrian flow from 

Intersection B,  setting temporal lag 30 seconds and 60 seconds to Intersection C and Path 1 

respectively, performed the best with lowest MAE, RMSE, and highest R-square. After reverse 

min-max scaling the errors, the MAE and RMSE are 3.33 and 4.21 persons respectively. While 

this temporal lag will differ for each location and depend on the spatial distribution of sensors, this 

process of choosing the temporal lags for each location can be replicated in other areas.  

(2) Graph Convolutional Neural Network (GCN) 

Given the larger spatial network and higher pedestrian volumes in the ASPED v.c. area compared 

to the more compact Cadell Courtyard (ASPED v.a), we also evaluated Graph Convolutional 

Network (GCN) models. GCNs are well-suited for this task, as they can explicitly incorporate 

spatial relationships between sensors via a graph structure. 

 We tested two configurations. (1) Raw 1-second data, and (2) Aggregated 5-second data, 

which helps smooth out momentary fluctuations without sacrificing temporal granularity. The 5-

second aggregation notably improved model stability and performance (Table 8). This is 

expected, as 1-second data tends to capture noisy transitions of pedestrians crossing zones. We 

also updated the loss function to MSE, as it brought better results compared to the SmoothL1 

function used in the CNN modeling approaches. In addition, since the model performed best 

when we encoded 30- and 60-seconds temporal lags to recorders in Intersection C and Path 1, we 

additionally tested on that configuration. 

 With a 30- and 60-second temporal lag, the MAE decreased from 0.13 (equivalent to 3.38 
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persons) in the CNN model to 0.11 (2.86 persons) in the GCN model (Table 7, Table 8), reflecting 

an approximate 15.38% reduction in error This improvement is notably greater than the gains 

reported by Liu et al. (2021), who observed a 9.55% error reduction when moving from CNN to 

GCN, and a 10.38% reduction with the Spatio-Temporal GCN (STGCN) in predicting pedestrian 

counts in the next minute using pedestrian count data. This suggests that the proposed GCN model 

configuration yields more performance gains in pedestrian flow prediction under the current 

experimental conditions.  

 

Table 8. Comparison of GCN Models with Disaggregated and Aggregated Input Data – 

Flow + Count Data 

 Validation Results 

(Disaggregated) 

Validation Results  

(5s Aggregated) 

Lag MAE RMSE R2 MAE RMSE R2 

No Lag 0.05 0.22 0.06 0.11 0.33 0.42 

10 seconds lag for Path 1, Int C. 0.06 0.24 0.00 0.07 0.27 0.51 

30 seconds lag for Int C, 60 seconds lag 

for Path 1 

0.04 0.21 -0.36 0.11 0.34 0.40 

 
 

Table 9. GCN Models with Temporal Lag Configurations, 5-seconds Aggregate Input 

  Training Results Validation Results 

Lag  MAE RMSE R2 MAE RMSE R2 

No lag Flow Data 0.10 0.32 0.27 0.14 0.37 0.29 

Count Data 0.09 0.27 0.47 0.13 0.36 0.34 

Flow + Count Data 0.07 0.26 0.50 0.11 0.33 0.42 

2 sequences lag 

(10 seconds lag for 

recorders in P1 

and Int C) 

Flow Data 0.11 0.33 0.20 0.14 0.37 0.27 

Count Data 0.08 0.28 0.44 0.13 0.36 0.34 

Flow + Count Data 0.07 0.26 0.51 0.11 0.34 0.41 

6 sequences/30 

seconds lag for Int 

C, 12 

sequences/60 

seconds lag for 

Path 1 

Flow Data 0.10 0.32 0.27 0.14 0.37 0.28 

Count Data 0.08 0.29 0.39 0.14 0.37 0.29 

Flow + Count Data 0.08 0.28 0.40 0.11 0.34 0.40 

 

Then, we experimented GCN models with flow data, count data, and the combined flow 

and count data as input to see how much count data predicts or improves prediction of pedestrian 

flow (Table 9). The results suggest that optimal predictive performance, reflected by the lowest 

MAE and highest R² values, was achieved under configurations employing either no temporal lag 

or a two-sequence lag (i.e., 10 seconds) for features derived from recorders at Path 1 and 

Intersection C. After reverse min-max scaling this value, the MAE of 0.07 is actually 2.08 persons 

and RMSE 0.26 is 6.76 persons. Given the 5-second aggregation of the dataset and the use of 10 
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sequential input chunks, each model input already includes temporal information spanning the 

prior 50 seconds even in the absence of additional lag. Furthermore, across all lag configurations, 

the inclusion of pedestrian count features consistently enhanced model performance, with further 

gains observed when both count and flow features were jointly utilized.  

To revisit results from Liu et al. (2021) for comparison, our R-square 0.51 is still very low, 

even compared to their lowest performing period which was during weekdays 7-8 AM (R-square 

of 0.67). However, because our task involves predicting flow rather than counts, a direct 

comparison may not be appropriate due to inherent differences in the target variable and task 

complexity. 

 

Figure 20. GCN Prediction Results, Intersection B: Clough to Intersection C 
 

From the visualization of prediction results (Figure 20. GCN Prediction Results, Intersection B: 

Clough to Intersection C, we discovered that GCN prediction exhibits over-smoothing, where both 

extremely low and high values are compressed toward the mean. As suggested by Wong et al. 

(2024), this issue can potentially be mitigated by incorporating a temporal modeling layer such as 

LSTM or Gated Recurrent Unit (GRU). Therefore, future research should conduct an additional 

experiment using the same model configuration with an additional temporal layer. 
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CONCLUSIONS AND POLICY IMPLICATIONS 

This study demonstrates the effectiveness of using video-based pedestrian detection techniques 

for estimating and predicting pedestrian flow. By leveraging deep learning approaches such as 

Convolutional Neural Networks (CNNs) and Graph Convolutional Neural Networks (GCNs), we 

developed a framework that identifies optimal feature selection that enables efficient modeling of 

pedestrian flow.  

While the current experiments relied solely on video sensors, the methodological 

framework is replicable to other settings and the empirical findings offer a foundation for 

evaluating alternative sensing modalities, including audio-based recorders. In contexts where 

video deployment is limited by cost, visibility, or privacy constraints, audio sensors may serve as 

a viable complement or substitute, particularly for capturing general pedestrian activity levels. 

Ultimately, this research contributes to the advancement of urban pedestrian sensing strategies 

that support data-informed planning. 

Limitations and Future Research Directions  

Several limitations must be acknowledged regarding the generalizability and scalability of the 

proposed framework. First, the model was developed and tested in two areas within the Georgia 

Tech campus, and its effectiveness in different cities or urban contexts, such as areas with much 

larger pedestrian road networks, remains to be validated. Expanding the framework’s application 

across various scale of settings is necessary to assess its adaptability.  

The model also shows sensitivity to pedestrian volume and activity levels. Its performance 

may differ between high-traffic pedestrian corridors and deserted areas. Real-world environments 

may also present anomalies, such as festivals or spontaneous gatherings, potentially affecting 

prediction accuracy. Another limitation is the need to develop and calibrate separate models for 

each intersection. Because the spatial configuration, sensor layout, and pedestrian movement 

patterns vary significantly from one location to another, a single generalized model may not be 

feasible without substantial retraining and adaptation.  

From a technical standpoint, the current sensor setup powered by battery boxes and reliant 

on SD card storage poses challenges for consistent long-term data collection. Stable model training 

and validation depend on uninterrupted sensor operation and reliable data access. In future 

deployments, integrating a consistent power source and remote data transmission settings will be 

critical to ensure data continuity and reduce operational burden. 

Lastly, the use of pedestrian count data and potential integration with mobile sensing 

technologies raises ethical and privacy considerations. Although this study anonymized data 

sources and avoided collecting personal identifiers by automatically blurring torsos, future 

research and implementation efforts must strictly adhere to privacy regulations and ethical 

guidelines. 

Practical Implications 

This study has implications for pedestrian mobility planning, public infrastructure investment, and 

data governance. First, the results support the case for incorporating pedestrian counting sensors, 

especially video systems, into urban monitoring networks. Such data can inform evidence-based 
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decisions, such as crosswalk timing, sidewalk allocation, and accessibility improvements, 

particularly in walkable city initiatives. 

Second, the framework developed here can aid transportation agencies in identifying high-

traffic pedestrian zones that may require targeted interventions, such as signal timing adjustments, 

crowd control measures, or redesign of intersections to prioritize pedestrian flow and safety. 

Predictive pedestrian flow models also have value for emergency preparedness and crowd 

management during planned events. 

However, the use of sensor-based pedestrian monitoring must be accompanied by clear 

policies on data governance and public transparency. Municipalities adopting such systems should 

establish protocols for anonymizing collected data, limiting its use to planning purposes, and 

communicating openly with the public about what is collected and why. In the case of future 

integration with audio or video-based sensing, adherence to privacy regulations and the 

development of individual consent-based frameworks will be important to maintain public trust. 

 

 

 

 

 

 

 

 

 

 

  



 

 

35 

 

REFERENCES 
  

Ahmed, S. H., Raza, M., Mehdi, S. S., Rehman, I., Kazmi, M., & Qazi, S. A. (2021). Faster RCNN 

based Vehicle Detection and Counting Framework for Undisciplined Traffic Conditions. 2021 

IEEE 18th International Conference on Smart Communities: Improving Quality of Life Using 

ICT, IoT and AI (HONET), 173–178. https://doi.org/10.1109/HONET53078.2021.9615466 

Ai, Y., Li, Z., Gan, M., Zhang, Y., Yu, D., Chen, W., & Ju, Y. (2019). A deep learning approach on 

short-term spatiotemporal distribution forecasting of dockless bike-sharing system. Neural 

Computing and Applications, 31(5), 1665–1677. https://doi.org/10.1007/s00521-018-3470-9 

Algiriyage, N., Prasanna, R., E.H. Doyle, E., Stock, K., Johnston, D., Punchihewa, M., & 

Jayawardhana, S. (2021, May). Towards Real-time Traffic Flow Estimation using YOLO and 

SORT from Surveillance Video Footage. WiP Paper - AI and Intelligent Systems for Crises and 

Risks. 18th ISCRAM Conference, Blacksburg, VA, USA. 

https://idl.iscram.org/files/nilanialgiriyage/2021/2311_NilaniAlgiriyage_etal2021.pdf 

American Planning Association. (1965). The Pedestrian Count. American Planning Association. 

https://www.planning.org/pas/reports/report199.htm 

Baul, A. (2021). Learning to Detect Pedestrian Flow in Traffic Intersections from Synthetic Data 

[Master Thesis, The University of Texis Rio Grande Valley]. 

https://scholarworks.utrgv.edu/etd/829/ 

Cheng, B., Misra, I., Schwing, A. G., Kirillov, A., & Girdhar, R. (2021). Masked-attention Mask 

Transformer for Universal Image Segmentation. https://doi.org/10.48550/ARXIV.2112.01527 

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. 1, 886–893. 

Deo, N., & Trivedi, M. M. (2021). Trajectory Forecasts in Unknown Environments Conditioned on 

Grid-Based Plans (arXiv:2001.00735). arXiv. http://arxiv.org/abs/2001.00735 

Dollar, P., Wojek, C., Schiele, B., & Perona, P. (2009). Pedestrian detection: A benchmark. 2009 IEEE 

Conference on Computer Vision and Pattern Recognition, 304–311. 

https://doi.org/10.1109/CVPR.2009.5206631 

Han, C., Seshadri, P., Ding, Y., Posner, N., Koo, B. W., Agrawal, A., Lerch, A., & Guhathakurta, S. 

(2024). Understanding pedestrian movement using urban sensing technologies: The promise 

of audio-based sensors. Urban Informatics, 3(1), 22. https://doi.org/10.1007/s44212-024-

00053-9 

Kitano, Y., Kuwamoto, S., & Asahara, A. (2019). OD-network-based Pedestrian-path Prediction for 

People-flow Simulation. 2019 IEEE International Conference on Big Data (Big Data), 1656–

1661. https://doi.org/10.1109/BigData47090.2019.9006314 

Li, J., Boonaert, J., Doniec, A., & Lozenguez, G. (2021). Multi-models machine learning methods for 

traffic flow estimation from Floating Car Data. Transportation Research Part C: Emerging 

Technologies, 132, 103389. https://doi.org/10.1016/j.trc.2021.103389 

Lin, Z., Feng, J., Lu, Z., Li, Y., & Jin, D. (2019). DeepSTN+: Context-Aware Spatial-Temporal Neural 

Network for Crowd Flow Prediction in Metropolis. Proceedings of the AAAI Conference on 

Artificial Intelligence, 33(01), 1020–1027. https://doi.org/10.1609/aaai.v33i01.33011020 

Liu, M., Li, L., Li, Q., Bai, Y., & Hu, C. (2021). Pedestrian Flow Prediction in Open Public Places 

Using Graph Convolutional Network. ISPRS International Journal of Geo-Information, 10(7), 

455. https://doi.org/10.3390/ijgi10070455 

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., & Berg, A. C. (2016). SSD: Single 

Shot MultiBox Detector. In B. Leibe, J. Matas, N. Sebe, & M. Welling (Eds.), Computer Vision 

– ECCV 2016 (Vol. 9905, pp. 21–37). Springer International Publishing. 

https://doi.org/10.1007/978-3-319-46448-0_2 

Ratti, C., Frenchman, D., Pulselli, R. M., & Williams, S. (2006). Mobile Landscapes: Using Location 



 

 

36 

 

Data from Cell Phones for Urban Analysis. Environment and Planning B: Planning and Design, 

33(5), 727–748. https://doi.org/10.1068/b32047 

Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You Only Look Once: Unified, Real-Time 

Object Detection (Version 5). arXiv. https://doi.org/10.48550/ARXIV.1506.02640 

Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards Real-Time Object Detection 

with Region Proposal Networks (Version 3). arXiv. 

https://doi.org/10.48550/ARXIV.1506.01497 

Sun, J., Zhang, J., Li, Q., Yi, X., Liang, Y., & Zheng, Y. (2022). Predicting Citywide Crowd Flows in 

Irregular Regions Using Multi-View Graph Convolutional Networks. IEEE Transactions on 

Knowledge and Data Engineering, 34(5), 2348–2359. 

https://doi.org/10.1109/TKDE.2020.3008774 

Van Steen, M., Stanciu, V.-D., Shafaeipour, N., Chilipirea, C., Dobre, C., Peter, A., & Wang, M. (2022). 

Challenges in Automated Measurement of Pedestrian Dynamics. In D. Eyers & S. Voulgaris 

(Eds.), Distributed Applications and Interoperable Systems (Vol. 13272, pp. 187–199). 

Springer International Publishing. https://doi.org/10.1007/978-3-031-16092-9_12 

Wong, V. (2024). SPATIO-TEMPORAL REPRESENTATION LEARNING: APPLICATIONS TO 

MANUFACTURING PLANNING AND PEDESTRIAN CROWD ANALYSIS. STANFORD 

UNIVERSITY. 

Xia, T., Lin, J., Li, Y., Feng, J., Hui, P., Sun, F., Guo, D., & Jin, D. (2021). 3DGCN: 3-Dimensional 

Dynamic Graph Convolutional Network for Citywide Crowd Flow Prediction. ACM 

Transactions on Knowledge Discovery from Data, 15(6), 1–21. 

https://doi.org/10.1145/3451394 

Xu, Y., Yu, G., Wang, Y., Wu, X., & Ma, Y. (2017). Car Detection from Low-Altitude UAV Imagery 

with the Faster R-CNN. Journal of Advanced Transportation, 2017, 1–10. 

https://doi.org/10.1155/2017/2823617 

Yabe, T., Tsubouchi, K., Shimizu, T., Sekimoto, Y., Sezaki, K., Moro, E., & Pentland, A. (2023). 

Metropolitan Scale and Longitudinal Dataset of Anonymized Human Mobility Trajectories. 

https://doi.org/10.48550/ARXIV.2307.03401 

Zhang, D., & Kabuka, M. R. (2018). Combining weather condition data to predict traffic flow: A GRU‐

based deep learning approach. IET Intelligent Transport Systems, 12(7), 578–585. 

https://doi.org/10.1049/iet-its.2017.0313 

Zhang, J., Zheng, Y., & Qi, D. (2017). Deep Spatio-Temporal Residual Networks for Citywide Crowd 

Flows Prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1). 

https://doi.org/10.1609/aaai.v31i1.10735 

Zhang, J., Zheng, Y., Qi, D., Li, R., Yi, X., & Li, T. (2018). Predicting citywide crowd flows using deep 

spatio-temporal residual networks. Artificial Intelligence, 259, 147–166. 

https://doi.org/10.1016/j.artint.2018.03.002 

Zhang, Y., Wang, J., & Yang, X. (2017). Real-time vehicle detection and tracking in video based on 

faster R-CNN. Journal of Physics: Conference Series, 887, 012068. 

https://doi.org/10.1088/1742-6596/887/1/012068 

 


