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EXECUTIVE SUMMARY 
 

Roadway safety and infrastructure maintenance represent ongoing challenges for cities 

worldwide. In the U.S. alone, pothole-related vehicle damage cost drivers an estimated $26.5 

billion in 2021. Meanwhile, traffic sign visibility and accuracy remain critical for both human 

drivers and autonomous vehicles. Traditional methods for roadway monitoring often rely on costly 

LiDAR systems or labor-intensive manual inspections, limiting scalability. This report explores 

affordable, image-based alternatives that leverage deep learning and 3D point cloud data to 

monitor both pavement conditions and traffic sign infrastructure. 

The first study presents a scalable pothole detection system that requires only a standard 

high-definition video camera. Road footage is converted into dense 3D models, cleaned to remove 

noise, and analyzed using robust geometric algorithms to identify depressions consistent with 

potholes. The system generates heatmaps that highlight severity and location, providing actionable 

insights for maintenance planning. Real-world testing demonstrates promising detection accuracy 

across diverse conditions, with higher-resolution video improving results. Its affordability and 

lightweight design enable deployment across fleets or roadside units, supporting continuous 

monitoring that reduces emergency repair costs and improves driver safety. 

The second study focuses on accurate 3D traffic sign detection. Using image-derived depth 

data, the system employs a Reprojection Loss Network (RLN) to minimize spatial errors and a 

geometric-aware refinement process to align bounding boxes with the planar surfaces of signs. 

Evaluations on a custom dataset derived from KITTI show sub-1% error rates, with significant 

improvements in orientation and dimensional accuracy. This approach reduces reliance on LiDAR 

while ensuring precise localization is necessary for autonomous navigation. 

Together, these contributions highlight the potential of image-based roadway monitoring 

systems to provide three key benefits: 

 

• Cost savings through elimination of expensive LiDAR hardware. 

• Proactive safety via real-time detection of hazards and sign degradation. 

• Scalability through integration with municipal fleets, roadside units, or autonomous 

vehicles. 

 

By combining pothole detection with traffic sign localization, this report demonstrates how 

deep learning and image-based point cloud analysis can form a unified, affordable, and data-driven 

framework for roadway health monitoring. Future work will explore higher-quality video inputs, 

automated segmentation, and hybrid approaches to further enhance accuracy and extend 

applicability to other roadway features. 
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STUDY 1: ROAD POTHOLE EXTRACTION FROM MONOCULAR VIDEO  

IN THE WILD 

INTRODUCTION 

Roads can accumulate damage over time with heavy use, leading to various defects such 

as potholes. A recent AAA study reveals that pothole damage has cost United States drivers 

$26.5 billion in 2021 alone (2022). Potholes can cause significant vehicle damage for drivers, 

including tire punctures, bent wheels, and even suspension damage. If left unmitigated, these 

potholes can become deeper or wider with continued use, posing an increased risk to public 

safety. This makes it crucial to detect and resolve potholes promptly to prevent further damage 

and ensure road safety. 

While many methods have been developed to detect road potholes, there is more to be 

done to improve cost-effectiveness, accuracy, and speed. Traditional approaches often rely on 

manual inspections, which are prone to being labor-intensive and time-consuming. More recent 

technologies, such as vibration sensors and LiDAR vehicle scanning, offer automated solutions, 

but can involve high costs or complex implementations. LiDAR-radar systems, such as those 

used by Waymo Jaguar I-Pace autonomous SUVs, can reach costs of up to $9,300 compared 

with the $400 camera system of a Tesla Model 3 (Hull, D., & Trudell, C., 2025). As cities 

continue to expand and traffic volumes increase, there is a growing need for efficient, scalable, 

and affordable pothole detection systems that can help authorities maintain road networks more 

proactively and minimize risks for all road users.  

Inexpensive camera-based solutions have proved to be a viable alternative to expensive 

hardware solutions, in particular, a semantic segmentation method being featured in the paper by 

Rateke and von Wangenheim (2021). It introduced a low-cost, passive-vision approach that 

classifies road surfaces and identifies damage types (including potholes) from monocular images, 

supported by their RTK dataset of annotated frames.  
In this paper, a system is proposed that is cost-effective and swift, requiring only a high-

definition video camera for operation. This makes it significantly more affordable than many 

other pothole detection approaches. While using a stereo camera setup can generate enhanced 

results, as demonstrated by works like Zhao et al. (2024) and Du et al. (2020), our paper’s 

proposed system uses a single camera to achieve high-quality pothole detection outcomes.  
The proposed system of this paper utilizes a variant of the Random Sample Consensus 

(RANSAC) algorithm, specifically the m-estimator sample consensus (MSAC) (Torr, P. H. S., & 

Zisserman, A., 2000). This algorithm is well known for its robustness in fitting geometric 

models, such as planes or surfaces, to data that contain a high proportion of noise outliers, which 

makes it particularly effective for real-world applications involving noisy data, such as 

identifying road surfaces and pothole detection from 3D point clouds generated using road 

images. By applying MSAC to the video data captured by the high-definition camera, the system 

can extract information about the road surface and identify deviations that indicate potholes.  
Compared to traditional RANSAC, MSAC offers improved accuracy by minimizing a 

modified cost function that penalizes points according to their residual errors rather than using a 

strict inlier/outlier threshold. This leads to more reliable detection results, even in challenging 

lighting or weather conditions. Furthermore, leveraging video data allows for continuous, frame-

by-frame analysis, enhancing the spatial and temporal resolution of pothole detection. As a 

result, the proposed approach not only achieves high detection accuracy but also enables real-
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time implementation, making it practical for integration into vehicle-based or roadside 

monitoring systems.   
Experimentally, it is shown that using monocular videos can effectively extract and 

detect road potholes for road condition assessment. The process involves several key steps 

designed to transform simple video footage into actionable structural information. First, video 

data, sourced from two external sources, is continuously captured using a single high-definition 

camera mounted on a moving vehicle. The recorded frames are then processed to generate a 

dense 3D point cloud model of the road surface through photogrammetry methods (RealityScan 

in the case of this paper).   
This initial point cloud often contains noise, outliers, and non-road elements such as 

vehicles, shadows, or roadside objects. To address this, a cleaning and preprocessing stage is 

performed to remove irrelevant points and improve overall data quality. Next, ground area 

extraction is performed to precisely isolate the actual road surface from its surroundings. This 

step is crucial for minimizing false positives and ensuring accurate analysis.   
Once the road surface has been isolated, pothole detection is carried out by fitting a 

planar model to the extracted ground points using the MSAC algorithm. Deviations from this 

fitted plane, which appear as local depressions or irregularities, are then identified as potential 

potholes. By quantifying these deviations in terms of depth and area, the system can assess the 

severity of each defect, providing valuable data for prioritizing maintenance efforts.   
The results demonstrate the effectiveness of the proposed system in various real-world 

conditions, including different lighting, weather, and surface textures. The combination of a 

single high-definition camera and the robust MSAC algorithm offers a cost-effective, scalable, 

and efficient solution for pothole detection, eliminating the need for expensive LiDAR systems 

or complex sensor arrays, such as the one shown in Figure C (RSXD, n.d.). Moreover, the 

simplicity of the setup allows for easy deployment on a large scale, enabling frequent and 

automated road condition assessments.   
By facilitating timely identification and repair of potholes, the system has the potential to 

greatly enhance road safety and reduce vehicle maintenance costs for drivers. In addition, the 

data collected can support city planning and infrastructure management by providing continuous, 

up-to-date information on road health.   
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LITERATURE REVIEW 

 Wu et al. (2019) proposed a hybrid pothole detection framework that integrates image-

based deep learning with three-dimensional point cloud analysis to overcome the limitations of 

traditional single-modality approaches. Their method first applies the DeepLabV3+ semantic 

segmentation network to pavement images to identify candidate pothole regions, which are then 

mapped onto a mobile LiDAR point cloud for geometric validation. By separating interior and 

exterior points around each candidate, the system fits a road plane to exterior points while using 

interior points to calculate pothole depth. This two-step process not only distinguishes potholes 

from filled patches but also provides quantitative measurements of severity, achieving a mean 

depth accuracy of 1.5-2.7 cm in real-world testing on a 26.4 km expressway in Shanghai. 

Compared to image-only methods, which lack precise depth information, and LiDAR-only 

methods, which struggle with edge localization, this fusion approach demonstrates how 

combining semantic segmentation with point cloud geometry can deliver both accurate detection 

and practical severity assessment, making it particularly relevant for road maintenance 

applications. 

Du et al. (2020) proposed a pothole detection method using 3D point cloud segmentation. 

Instead of relying on accelerometers, 2D image-based approaches, which are prone to noise, or 

costly LiDAR scanners, the authors use binocular stereo vision to reconstruct a 3D point cloud of 

the road surface. In the point cloud, potholes appeared as depressions. A plane is fit to the road 

surface using least-squares plane fitting. By then subtracting this road plane, candidate pothole 

regions are left remaining. K-means clustering is then employed to group the pothole points and 

remove outliers. A region growing segmentation algorithm is used to expand from seed points, 

ensuring that the entire pothole boundary is extracted accurately. Without relying on specialized 

equipment, Du et al. are able to combine plane fitting, k-means clustering, and region growing 

segmentation for robust pothole detection. While stereo vision provides accuracy advantages, it 

still increases the complexity of camera calibration and computational overhead, highlighting the 

trade-off between accuracy and efficiency in vision-based detection. 

Traditional monocular depth estimation and stereo matching methods in perspective view 

struggle with accurate fine-grained road elevation from perspective images, creating a need for 

Bird’s-Eye-View (BEV) reconstruction (Zhao et al., 2024). Zhao et al.’s RoadBEV, a vision-

based approach for road surface reconstruction uses BEV perception to improve elevation 

estimation for autonomous vehicles. Traditional monocular depth estimation and stereo matching 

approaches in perspective view struggle to capture fine-grained road geometry due to sparse and 

biased depth curves. RoadBEV addresses these limitations by projecting voxel features from the 

camera view into a BEV representation, where elevation estimation is treated as a classification 

problem over predefined height bins. The authors propose two models: RoadBEV-mono, using 

monocular input, and RoadBEV-stereo, using stereo image pairs to exploit multi-view 

correspondence. Evaluations on the Road Surface Reconstruction Dataset, collected by the 

authors, demonstrate significant improvements over conventional monocular depth and stereo 

matching methods. The study highlights that BEV-based Road Surface Reconstruction provides 

dense, top-down road features, enabling more accurate and robust elevation reconstruction, 

showing potential for enhancing planning and control in autonomous driving. 

Dhiman et al. (2018) proposed a stereo vision-based pothole detection system that uses 

multi-frame accumulation to improve road surface reconstruction accuracy. Their method starts 

with disparity estimation from stereo images and plane fitting using RANSAC to isolate 

candidate pothole regions, which are then refined through the construction of a digital elevation 
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model by aligning multi-frame 3D point clouds to a road-centered coordinate system. By 

identifying valleys in the digital elevation model through connectedness and region-growing 

analysis, their approach achieves more reliable detection compared to single-frame stereo 

methods. The system demonstrated over 30% improvement in accuracy while remaining cost-

effective by relying on only on stereo cameras, making it a great alternative to expensive LiDAR 

solutions. Building on this paper’s reliance on RANSAC, our work employs an improved 

RANSAC variant to reduce overall error (Torr, P. H. S., & Zisserman, A., 2000). 

More recently, camera-based semantic segmentation methods have demonstrated the 

feasibility of detecting road surface damage using inexpensive hardware. Motivated by the lack 

of research done to explore the road conditions of developing countries, Rateke and von 

Wangenheim (2021) introduced a low-cost, passive-vision approach that classifies road surfaces 

and identifies damage types from monocular images, supported by their RTK dataset of 

annotated frames of road imperfections of Brazilian roadways. Their work differentiates between 

asphalt, paved, and unpaved roads, and detects various types of surface damage beyond potholes, 

including cracks and bumps. Using U-NET with Resnet34 and Resnet50 encoders, they 

employed a two-stage training process, pretraining on unweighted classes and fine-tuning with 

class weights, to address severe class imbalance. Their approach reliably detects most key road 

features and damages, except for rare classes such as speed bumps and cracks that remain a 

challenge. The results of this paper prove that monocular camera-based approaches can more 

than sufficiently extract useful road surface. 

 Taken together, these studies illustrate the evolution of pothole detection from 

multimodal fusion and stereo-based reconstruction to BEV perception and deep learning 

segmentation. Yet a clear trade-off emerges between robustness, computational cost, and the 

ability to capture a fine-grained geometry. While stereo and BEV methods improve elevation 

accuracy, they require more complex sensing and processing. Segmentation-based methods 

enable broader surface classification but struggle with small-scale defects. This motivates our 

approach: a lightweight, monocular vision pipeline that leverages MSAC-based geometric 

reconstruction to detect and quantify potholes with lower computational overhead, while 

maintaining the accuracy necessary for practical road monitoring.  



 

 

6 

 

METHODS 

As Stage I of the proposed pothole detection system illustrates in Figure 1, 3D point 

cloud road data is obtained with the assistance of RealityScan 2.0 (previously known as 

RealityCapture) photogrammetry software (Epic Games, n.d.). At the start of this stage, a high-

definition camera is mounted securely on a vehicle, positioned to capture a wide field of view 

that includes both the road surface and surrounding non-road areas. This setup ensures 

comprehensive coverage of the environment directly in front of the vehicle during movement. 

The vehicle then travels along road segments, continuously recording high-resolution video 

footage of the road conditions. Once the video data is acquired, RealityScan software can be 

used to process the captured video frames to reconstruct a detailed 3D point cloud representation 

of the scene. This reconstruction integrates multiple viewpoints extracted from the video to 

model the spatial geometry of both road and surrounding objects. The resulting point cloud 

provides a dense and precise digital model that serves as the foundation for further analysis and 

pothole detection. LiDAR could be used to collect 3D point clouds but is not recommended 

given that it is an expensive sensor to acquire.  
Stage II describes the crucial process of data cleaning and preprocessing of the road 

model before it can be effectively utilized for pothole detection tasks. The open-source 3D point 

cloud editor software CloudCompare is employed to visualize and refine the raw 3D point cloud 

generated in the previous stage (CloudCompare, n.d.). During this phase, a Statistical Outlier 

Filter is applied to identify and remove noisy or isolated points that may result from errors in the 

photogrammetry reconstruction or environmental noise, thereby improving the overall accuracy 

and smoothness of the model. In addition, the point clouds are reoriented so that the road plane 

aligns perpendicularly to the z-axis of the coordinate system. This standardization simplifies 

subsequent analysis and facilitates easier plane fitting and height calculations. The preprocessing 

stage ensures that the point cloud is cleaner, more consistent, and geometrically well-aligned, 

which is vital for the precise identification of road surface anomalies in later stages.  
After data cleaning, stage III focuses on isolating the ground areas from the 

comprehensive 3D point clouds. This involves segmenting and removing parts of the point cloud 

model that corresponds to non-road features, such as roadside vegetation, vehicles, curbs, or 

other infrastructure elements, since these are not relevant to the objective of pothole detection. 

The refined point cloud now consists solely of the road surface, allowing for more targeted 

analysis. To manage and analyze this large dataset more efficiently, the point cloud is then 

divided into smaller, manageable rectangular sections or “tiles” along the longitudinal axis of the 

road. Each partition represents a specific segment of the road, enabling localized plane fitting 

and detailed surface analysis within each section. This tiling strategy supports scalable 

processing and facilitates the detection of small-scale surface deformations that may otherwise 

be overlooked in a large continuous model.   
 For the final stage, Stage IV, the M-estimator Sample Consensus (MSAC) algorithm is 

utilized to robustly fit a plane to each road partition derived in the previous step (MathWorks, 

n.d.). This algorithm is an improved variant of the well-known RANSAC method, designed to 

handle noisy data and outliers effectively. The implementation of the MSAC algorithm and 

subsequent data analysis, including inlier and outlier extraction as well as elevation heatmap 

generation, were performed using MATLAB. The elevation heatmap effect is produced by 

coloring points based on their z-coordinate. Other approaches for generating heatmaps were also 

considered, including total curvature estimation proposed by Chen (2023a, 2023b). As shown in 

Figure B1 of Appendix B, the tool performed well on Chen’s example data models. However, 
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when applied to our road data, the results were mixed. It effectively highlighted deeper potholes 

but struggled to detect shallower ones, as depicted in Figure B2 of Appendix B. Figure B3 

depicts the same road data partition from Figure B2, but before the total curvature estimation tool 

is applied. By fitting a plane to each tile, the algorithm models the expected flat surface of the 

road, while simultaneously identifying points that deviate significantly from this model 

(MathWorks, n.d.). The algorithm outputs a set of inlier points, which closely adhere to the fitted 

plane, and a set of outlier points, which represent deviations such as potholes or other surface 

anomalies. These outlier points are then extracted to form a new point cloud that specifically 

highlights the pothole regions. From this extracted data, an elevation heatmap can be generated 

in MATLAB, visually emphasizing variations in road surface height and providing quantitative 

information about the depth and severity of each pothole. This final analysis not only facilitates 

precise localization of potholes but also supports maintenance prioritization and detailed road 

condition assessments.       

See Appendix A for the MATLAB code that executes Stage IV of the pothole extraction 

system for both data sources used in this paper. 
  

 
Figure 1: Stages of proposed pothole extraction system 

  



 

 

8 

 

DATA 

In the first part of the experiment conducted for this paper, the system commences with 

acquiring a 3D point cloud model of a road surface using publicly available video data. 

Specifically, a 15-second video with a 1920 x 1080-pixel resolution, recorded by a high-

definition camera mounted on a moving vehicle driving over a pothole-filled road, was sourced 

from YouTube (Sudbury.com, 2019). This video footage captures various sections of the road 

that exhibit prominent surface anomalies. Selected keyframes from the video are shown in 

Figures 2a, 2b, and 2c, each highlighting visible and distinct potholes that will later be observed 

in the generated 3D model. Because the video is recorded at 30 frames per second (fps), a total of 

approximately 450 individual frames is extracted and processed. These frames are then fed into 

RealityScan to reconstruct a detailed 3D model of the scene.  

The second part of the experiment mirrors the procedure used in the first part but 

introduces a different data source to evaluate the system’s adaptability and robustness. For this 

phase, a new point cloud is generated using a 27-second video recorded at 1280 x 720 resolution 

and 25 fps, sourced from the “potholesinaruralroad.mp4” video shared in the README file from 

a GitHub repository (Vatti, 2024).  
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Figure 2: Select frames from the Sudbury.com video (2019) and their matching pothole 

detection results; from top to bottom, the left images will be referred to as Figure 2a, 2b, 

and 2c and the right images will be referred to as Figure 2d, 2e, and 2f 
  

 

Figure 3: 3D point cloud road model, after cleaning and segmentation; Note the 

depressions in the center area of the model, which represent potholes in the road  
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ANALYSIS 

The point cloud generated through the RealityScan 3D reconstruction process initially 

includes both road and non-road elements due to the camera’s field of view, which could 

encompass curbs, sidewalks, or roadside vegetation. To address this, the model undergoes a 

series of preprocessing steps, including outlier removal, rotational alignment with the z-axis, and 

segmentation to exclude non-road regions. The resulting refined model, as shown in Figure 3, 

retains the road surface while excluding irrelevant geometry. Notably, potholes are 

distinguishable in this cleaned model, appearing as localized depressions within the relatively 

flat road plane. These visible cavities provide early confirmation that the reconstruction has 

preserved essential surface deformations critical for pothole detection.  
To follow, the experiment proceeds to the plane fitting stage, where the road surface is 

analyzed on a per-tile basis. Each tile is individually processed using the M-estimator Sample 

Consensus (MSAC) algorithm, which attempts to fit a best-fit plane to each partition while 

minimizing the impact of outliers. For this experiment, the maximum allowed distance from an 

inlier point to the fitted plane (Mathworks, n.d.) is set to 0.071 units. Figure 4 presents the results 

of this detection process, showing how points that significantly deviate from the road plane—

likely representing potholes—are isolated and visualized.   
A visual comparison of the original video frames (Figure 2) with the detection results 

(Figure 4) reveals strong alignment between the observed potholes and the extracted features. 

The real-world potholes visible in Figure 2a are detected near coordinates (-10, 3) and extracted 

in Figure 2d, those from Figure 2b are visible near coordinates (0, 2) and extracted in Figure 2e, 

and those from Figure 2c are visible around coordinates (15, 2) and extracted in Figure 2f. These 

spatial correlations confirm that the plane fitting approach effectively localizes potholes, 

especially the more pronounced or wider ones.  
  

 Figure 4: Detected pothole points concatenated to form a new point cloud model  

  
With the detected pothole points now isolated into a new point cloud model, an elevation 

heatmap is generated to visualize the depth and severity of the potholes. This map, shown in 

Figure 5, enables intuitive identification of areas requiring urgent road maintenance. The 

elevation data highlights not only the location but also the approximate depth of each detected 

anomaly, making this an informative tool for road condition assessment.  
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Figure 5: Elevation heatmap of potholes, with red indicating the deepest depth and blue 

indicating the shallowest depth 

  
The second video from the next part of the experiment captures a different road segment, 

and a notable distinction is the presence of deep water-filled potholes, which complicates the 

reconstruction process. These puddle-filled depressions are more challenging for RealityScan to 

model accurately, often resulting in sparse or incomplete sections in the generated point cloud. 

Figures 7a and 7b present selected frames from the video, displaying several prominent potholes. 

The point cloud reconstructed from this dataset is shown in Figure 6, and due to surfaces like 

water, some regions of the model contain holes or inconsistencies. To account for the denser 

noise and shallower detail, the MSAC plane fitting algorithm is used again but with a stricter 

inlier distance threshold of 0.01.   
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Figure 6: An additional 3D point cloud road model, after cleaning and segmentation 

 

 

  

  
Figure 7: Select frames from the Vatti Github video (2024) that was used to generate the 

point cloud model in Figure 6; from top to bottom, the left images will be referred to as 

Figure 7a and 7b and the right image will be referred to as 7c and 7d 
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Figure 8: Elevation heatmap of potholes from the 3D point cloud road model of the second 

part of the experiment 
  

The results of pothole detection for this lower-resolution model are displayed in Figure 8. 

The lighter-colored regions in this figure correspond to potholes with more significant vertical 

displacement.   
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RESULTS 

The spatial correlations from the first part of the experiment confirm that the plane fitting 

approach effectively localizes potholes, especially the more pronounced or wider ones. However, 

the detections also include some extraneous artifacts, especially near the upper edge of the 

detections of Figure 4. Inspection of the full model in Figure 3 suggests that this region contains 

sparse data and reconstruction artifacts, likely due to the limitations of the original video’s 

resolution and frame rate. These artifacts introduce gaps in the point cloud, which the system 

occasionally misclassifies as depressions. This indicates that increasing the source video’s 

resolution and frame rate would likely enhance the density and accuracy of the reconstructed 

model, reduce false positives, and improve detection quality.   

The second, lower-resolution model produced mixed results. Despite the reduced input 

quality of the source data, the algorithm successfully detects several large potholes, especially 

those on the left side of the road. In contrast, the right side exhibited significantly fewer 

detections. A likely explanation is that the camera in this video was positioned closer to the left 

side of the vehicle, offering a clearer view of that portion of the road while the right side 

remained partially occluded. This asymmetric perspective reduced the reconstruction quality 

across the entire model. 
 To assess detection quality, the potholes from the original frames (Figure 7) were 

mapped to their corresponding regions in the 3D coordinate space of Figures 6 and 8. The 

potholes in Figure 7a align near coordinates (0, -11), while those in Figure 7b appear around 

coordinates (0, -6). This mapping confirms that the major features visible in the video are 

captured by the detection system. Nevertheless, several false positives remain, attributable to the 

lower-resolution input video. The sparser point cloud increases uncertainty in plane fitting and 

heightens the risk of misclassifying holes or gaps as potholes.  

Overall, these findings demonstrate that while the system can detect potholes across 

different video qualities, detection accuracy and robustness improve considerably with higher-

resolution and higher frame-rate data. This underscores the importance of source video quality in 

maximizing the effectiveness of the proposed detection framework. 
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CONCLUSIONS AND POLICY IMPLICATIONS  

With extensive use over time, potholes frequently accumulate on roads, causing a range 

of issues, including driver inconvenience, vehicle collisions, and significant vehicle degradation. 

Addressing these potholes promptly is essential to prevent serious accidents and costly repairs. 

Detecting and resolving these potholes efficiently can mitigate potential hazards and expenses.   
This paper introduces a comprehensive, four-stage pothole extraction system designed to 

be both swift and cost-effective compared to existing methods. The proposed system’s stages 

include:  
1. 3D Point Cloud Road Model Acquisition: Utilizing RealityScan, a detailed 3D point 

cloud model of the road surface is created from captured video frames. This model 

provides high-resolution data that is crucial for accurate detection of surface anomalies.   

2. Data Model Cleaning and Preprocessing: The raw point cloud data undergoes a thorough 

cleaning process to remove noise and irrelevant data. Preprocessing steps ensure that the 

data set is optimized for subsequent analysis, enhancing the accuracy of pothole 

detection.   

3. Ground Area Extraction: In this stage, the road surface is isolated from the surrounding 

environment. This involves distinguishing the ground area from non-road areas, which is 

critical for focusing the analysis on the actual road surface where potholes may form.  

4. Pothole Area Detection: The final stage involves fitting a plane to the road model to 

identify deviations that indicate the presence of potholes. By extracting these pothole 

points, an elevation heatmap is generated, providing a visual representation of each 

detected point’s elevation relative to the road surface.   

 

Experimental evaluation using two road models highlights both the system’s strengths 

and limitations. The results show that pothole detection improves substantially when higher-

resolution and higher-frame-rate video data are used, while lower-quality inputs lead to sparser 

reconstructions and more false positives. These findings suggest that the proposed system is a 

promising foundation for pothole detection, but its full potential depends on the availability of 

higher-quality input data. 
 The implementation of this four-stage system offers significant advantages, including 

reduced costs and improved speed of pothole detection compared to traditional methods. By 

addressing potholes before they lead to severe damage or accidents, this system contributes to 

enhanced road safety and longevity. Furthermore, the ability to generate precise elevation 

heatmaps allows for a detailed analysis of road conditions, facilitating proactive maintenance 

strategies.   
We evaluate this system using two different road models created from video frame data. 

From the comparison of the results of our two-part experiment, we reveal that pothole detection 

is improved when utilizing higher resolution and higher frame rate video data. Finally, we also 

suggest further enhancements to this four-stage pothole detection system to achieve improved 

results quicker.   
Future work may explore integrating this pothole detection approach with other sensing 

modalities and real-time cloud-based or edge-based processing to further improve accuracy and 

operational efficiency. In addition, acquiring higher-quality 3D models for more extensive 

experimentation would be beneficial; for example, using a high-definition camera capable of 

capturing at least 60 frames per second could help generate more detailed and accurate road 

models. Implementing a general “sliding window” approach, rather than the static partitioning 
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used in the current system, may also enhance pothole detection by allowing for more flexible and 

adaptive analysis of the point cloud data. Furthermore, investigating a deep learning-based 

method for ground area extraction could automate the manual segmentation currently performed 

in stage III, potentially increasing both speed and consistency. Finally, combining this 3D 

detection system with a 2D pothole detection system could create a hybrid framework that 

reduces the likelihood of missed detections and improves overall robustness (Vatti, 2024).  

Beyond its technical contributions, this system offers practical benefits for transportation 

agencies and policymakers. By leveraging inexpensive video data to generate accurate 3D road 

models, the framework supports proactive maintenance strategies that reduce repair costs and 

extend roadway lifespans. Its scalability makes it suitable for deployment in both developed and 

developing regions, where budget constraints often limit access to high-cost sensing 

technologies. Integration into smart transportation or city management systems could further 

support data-driven decision-making, improving road safety, optimizing maintenance schedules, 

and ultimately reducing accident risk and vehicle damage associated with neglected potholes. 
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APPENDIX A 

 

MATLAB Pothole Extraction code for first road model 

filepath = 'road_model for Video 1\road_model_segmented_and_cleaned.las'; 

lasReader = lasFileReader(filepath); 

ptCloud = readPointCloud(lasReader); 

figure 

pcshow(ptCloud.Location) 

colormap(flipud(turbo)) 

xlabel("X(m)") 

ylabel("Y(m)") 

zlabel("Z(m)") 

title("Original Point Cloud") 

 

maxDistance = 0.071; 

 

ptCloudOut = []; 

filepath = 'road_model for Video 1\tiled_road_model'; 

files = dir(fullfile(filepath,'*.las')); 

for i = 1:length(files) 

   filename = files(i).name; 

   fullfilename = fullfile(filepath,filename); 

   lasReader = lasFileReader(fullfilename); 

   ptCloud = readPointCloud(lasReader); 

   [model1,inlierIndices,outlierIndices] = pcfitplane(ptCloud,maxDistance); 

   plane1 = select(ptCloud,inlierIndices); 

   remainPtCloud = select(ptCloud,outlierIndices); 

   [model2,inlierIndices,outlierIndices] = pcfitplane(remainPtCloud,maxDistance); 

   plane2 = select(remainPtCloud,inlierIndices); 

   remainPtCloud = select(remainPtCloud,outlierIndices); 

   ptCloudOut = [ptCloudOut plane2]; 

end 

 

potholes = pccat(ptCloudOut); 

figure 

pcshow(potholes) 

xlabel("X(m)") 

ylabel("Y(m)") 

zlabel("Z(m)") 

title("Detected Potholes") 

 

figure 

pcshow(potholes.Location) 

colormap(flipud(turbo)) 

xlabel("X(m)") 

ylabel("Y(m)") 
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zlabel("Z(m)") 

title("Detected Potholes with Elevation") 

 

 

MATLAB Pothole Extraction code for second road model 

filepath = 'road_model for Video 2\road_model_2_cleaned_and_segmented.las'; 

lasReader = lasFileReader(filepath); 

ptCloud = readPointCloud(lasReader); 

figure 

pcshow(ptCloud.Location) 

colormap(flipud(turbo)) 

xlabel("X(m)") 

ylabel("Y(m)") 

zlabel("Z(m)") 

title("Original Point Cloud") 

 

maxDistance = 0.01; 

 

ptCloudOut = []; 

filepath = 'road_model for Video 2\tiled_road_model_2'; 

files = dir(fullfile(filepath,'*.las')); 

for i = 1:length(files) 

   filename = files(i).name; 

   fullfilename = fullfile(filepath,filename); 

   lasReader = lasFileReader(fullfilename); 

   ptCloud = readPointCloud(lasReader); 

   [model1,inlierIndices,outlierIndices] = pcfitplane(ptCloud,maxDistance); 

   plane1 = select(ptCloud,inlierIndices); 

   remainPtCloud = select(ptCloud,outlierIndices); 

   [model2,inlierIndices,outlierIndices] = pcfitplane(remainPtCloud,maxDistance); 

   plane2 = select(remainPtCloud,inlierIndices); 

   remainPtCloud = select(remainPtCloud,outlierIndices); 

   ptCloudOut = [ptCloudOut plane2]; 

end 

 

potholes = pccat(ptCloudOut); 

figure 

pcshow(potholes) 

xlabel("X(m)") 

ylabel("Y(m)") 

zlabel("Z(m)") 

title("Detected Potholes") 

 

figure 

pcshow(potholes.Location) 

colormap(flipud(turbo)) 
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xlabel("X(m)") 

ylabel("Y(m)") 

zlabel("Z(m)") 

title("Detected Potholes with Elevation") 
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APPENDIX B 

 

 
Figure B1: Using Total Curvature Estimation tool on provided example models, all 

produced by Crane He Chen work 
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Figure B2: Using Total Curvature Estimation tool on a partition of our road data 

 

 
Figure B3: Our road data partition before Total Curvature Estimation tool is applied 
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APPENDIX C 

 

Figure C: Sensor Configuration from (RSXD, n.d.), composed of a LI-AR023ZWDR 

camera, Hesai XT32 LiDAR sensor, UBlox F9P GNSS-RTK, XSENS MTi670 IMU, and an 

ADXL345 Accelerometer  
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STUDY 2: GEOMETRIC-AWARE 3D OBJECT DETECTION FOR TRAFFIC SIGNS 

INTRODUCTION 

Accurate detection and localization of traffic signs are crucial for the safe operation of 

autonomous vehicles (Yu et al., 2024; Fang et al., 2022). While traditional 3D object detection 

methods often rely on LiDAR technology (Fang et al., 2022; Zhang et al., 2019; Huang et al., 

2017), they can be expensive and complex. Alternative image-based depth estimation techniques 

offer a cost-effective solution, but achieving high precision remains challenging. 

This paper uses image-derived depth data to explore a method that detects and refines 3D 

bounding boxes for traffic signs. Central to this method are two key components: the Reprojection 

Loss Network (RLN) and a geometric-aware refinement process. The RLN focuses on reducing 

reprojection errors, thereby improving the spatial precision of detected objects. This process is 

critical for ensuring the detected 3D positions align accurately with real-world objects, a necessary 

condition for reliable autonomous navigation. 

The geometric-aware refinement further enhances the bounding boxes by adjusting them 

to match the planar surfaces of traffic signs. This step is crucial for achieving accurate orientation 

and dimension representation, which is vital for autonomous systems’ correct interpretation of 

traffic signs. 

The method’s effectiveness is demonstrated using a custom dataset annotated for traffic 

signs, showing significant improvements in detection accuracy. This research highlights the 

potential of image-based depth estimation methods for cost-effective and accurate 3D object 

detection in autonomous driving applications. 
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LITERATURE REVIEW 

 Accurate depth estimation is crucial for 3D object detection in autonomous driving, 

particularly when seeking cost-effective alternatives to LiDAR. Stereo-based approaches, 

monocular depth estimation, and ensemble models have all contributed to advancing image-based 

3D perception. 

You et al. (2019) advanced the pseudo-LiDAR framework by addressing depth estimation 

errors for distant objects in stereo-based detection. They proposed a stereo depth network that 

optimizes depth directly and a graph-based correction method using sparse LiDAR to de-bias 

predictions. Their method outperforms prior stereo-based approaches and improves far-distance 

detection by up to 40%, approaching LiDAR-level accuracy at lower cost. These advancements 

motivate the use of stereo-derived depth for precise traffic sign localization in our work, 

particularly for objects with small spatial footprints. 

Li et al. (2023) introduced a cross-cue fusion module to enhance depth estimation in 

dynamic scenes, integrating monocular and multi-view cues within a unified volumetric 

representation. By applying cross-cue attention, their approach improves robustness in both static 

and dynamic regions, reducing errors in motion-sensitive areas. This work highlights the 

importance of incorporating multiple depth cues and inspires our refinement strategy to account 

for variability in traffic scenes. 

Yin et al. (2023) addressed the challenge of recovering metric 3D structure from a single 

image, overcoming limitations of affine-invariant monocular methods that lack metric scale. They 

proposed a canonical camera space transformation and a random proposal normalization loss to 

improve local depth accuracy. Trained on over eight million images, their model achieves 

competitive zero-shot performance across multiple benchmarks and mitigates scale drift in 

monocular SLAM. While their approach excels at general monocular metric depth recovery, it 

does not specifically target small, planar objects like traffic signs, a gap our method addresses. 

Cantrell et al. (2020) explored monocular RGB-based depth estimation as an alternative to 

traditional range sensors, proposing a modular ensemble of U-Nets that integrates pretrained 

features such as semantic segmentation. Their W-Net Connected variant achieved lower mean 

squared error than individual U-Nets, demonstrating that combining segmentation features with 

RGB input can enhance depth estimation accuracy. Despite higher computational costs, their work 

demonstrates the potential of feature-enriched networks for precise, cost-effective depth prediction, 

supporting the use of segmentation-guided refinement in our pipeline. 

Yang et al. (2024) presented Depth Anything, a foundational model for monocular depth 

estimation designed to generalize across diverse visual conditions. Leveraging large-scale 

unlabeled and labeled image data in a teacher-student framework, and integrating semantic priors 

via feature alignment, their model achieves superior zero-shot depth estimation and state-of-the-

art performance on benchmark datasets. Their approach underscores the value of scalable, task-

agnostic pretraining for robust depth perception, reinforcing the benefits of incorporating 

pretrained features in our traffic sign detection pipeline. 

Collectively, these studies demonstrate the potential of image-based depth estimation for 

3D scene understanding. However, few methods specifically address accurate, cost-effective 3D 

localization of planar traffic signs. Our work builds on these foundations by integrating a 

Reprojection Loss Network (RLN) and geometric-aware refinement to precisely detect and align 

traffic sign bounding boxes in 3D space, providing a practical alternative to expensive LiDAR-

based systems. 
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METHODS 

 Our methodology comprises several distinct stages: first, we acquire a depth map from a 

pair of stereo images to reconstruct the 3D scene. This is followed by the detection and 

segmentation of the object of interest within the left image. Using the segmented area, we 

calculate the object’s depth and project its bounding box onto the reconstructed 3D scene. The 

refinement process is divided into two stages. The first stage, part of the training phase, involves 

optimizing the bounding boxes based on reprojection errors. The second stage, a post-processing 

step, employs a geometric-aware approach to further refine the bounding boxes of traffic signs, 

correcting their rotation and adjusting their dimensions for enhanced precision. 

 

A. 3D Scene Reconstruction 

In the 3D reconstruction phase, we adopt the methodology outlined in Pseudo-Lidar++ 

(You et al., 2019) and utilize their Stereo Depth Network (SDN), which is specifically designed 

to optimize accurate depth estimation rather than traditional disparity estimation. The 

optimization is expressed as follows: 

 
∑ ℓ(𝑍(𝑢, 𝑣) − 𝑍∗(𝑢, 𝑣))(𝑢,𝑣)∈𝐴                (1) 

 

where 𝑍(𝑢, 𝑣) is the estimated depth, 𝑍∗(𝑢, 𝑣) is the ground truth depth, ℓ is the smooth L1 loss, 

and A includes pixels for which ground truths are available. 

 This method emphasizes reducing depth estimation errors for distant objects by 

constructing a cost volume on a depth grid, thereby enabling 3D convolutions and the loss 

function to operate at the appropriate scale for depth accuracy. It is important to note that while 

this phase can be substituted with other depth estimation methods capable of delivering accurate 

scene depth (Li et al., 2023; Yin et al., 2023; Cantrell et al., 2020; Yang et al., 2024), the 

precision of subsequent steps significantly relies on the robustness of this phase. 

 

B. Object Detection 

In this phase, we fine-tune an existing pre-trained object detection model to identify 

traffic signs within the image. The bounding boxes from the fine-tuned model serve as prompt 

encoders for the Segment Anything Model (SAM) (Kirillov, 2023), which produces a 

segmentation mask. We further refine this mask by applying outlier removal techniques and 

identifying the rectangular contour of each detected object, thereby achieving more precise 

bounding boxes. Additionally, we use the segmented mask to calculate depth. This step is crucial, 

as the bounding boxes generated by the object detection model may not be entirely accurate and 

are axis-aligned. Moreover, for signs that are non-rectangular, considering the entire area within 

the bounding box for depth estimation could lead to inaccuracies due to surrounding areas that 

do not correspond to the actual sign. Therefore, for each sign, we calculate the depth using only 

the pixels that correspond to the mask. This process is illustrated in (Figure 1). 
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Figure 1 Initial bounding boxes (top), corresponding masks and their contours (bottom). 

The images are from the Kitti dataset (Geiger et al., 2013) 

 

C. Projection 

During the projection phase, the refined bounding boxes are translated into the 3D scene 

using the stereo projection matrix 𝑃. The focal lengths along the x and y axes (𝑓𝑥 and 𝑓𝑦), as well 

as the optical center coordinates (𝑐𝑥 and 𝑐𝑦), are extracted from 𝑃. For each pixel within the 

bounding box, we examine the associated mask to determine valid points. Only pixels where the 

mask is true are considered, and their depth 𝑧 from the depth map is used. The valid 𝑧 values are 

collected and processed to exclude the lower and upper quartiles, focusing on the central range of 

depth values to mitigate outliers. We then compute the average 𝑧 value from these middle 

quartiles and convert the bounding box corners into 3D coordinates using the following 

transformations: 

 

𝑥 = (𝑢 − 𝑐𝑥).
𝑧

𝑓𝑥
                 (2) 

 

𝑦 = (𝑣 − 𝑐𝑦).
𝑧

𝑓𝑦
                 (3) 

 

These coordinates form the initial 3D bounding boxes. Subsequent refinements of these 

initial projections will be addressed in two stages. The first stage corrects for reprojection errors, 

and the second stage utilizes a geometric-aware approach as post-processing. This phased 

approach ensures detailed and precise alignment of the bounding boxes with the objects in the 

scene, which will be elaborated on in the following sections. 
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D. Reprojection Loss 

In this phase, the objective is to enhance the accuracy of 3D bounding boxes by 

minimizing reprojection errors, crucial for applications where precise object detection and 

positioning are essential for operational safety and efficiency. 

The RLN (Reprojection Loss Net) model, a specialized convolutional neural network, 

was developed to refine the spatial positioning of bounding boxes by integrating image and depth 

information. This network, constructed with multiple convolutional, pooling, and fully connected 

layers, is designed to meticulously extract spatial features from the image and depth inputs, 

enabling the model to adjust the 3D bounding boxes to better match their 2D projections. 

During training, the Generalized Intersection over Union (GIoU) loss (Rezatofighi, 2019) 

is employed to measure the refinement effectiveness: 

 

𝐺𝐼𝑜𝑈 𝐿𝑜𝑠𝑠 = 1 −
|𝐴 ∩𝐵|

|𝐴∪𝐵|
+

|𝐶−(𝐴∪𝐵)|

|𝐶|
               (4) 

 

where 𝐴 and 𝐵 denote the areas of the predicted and ground truth bounding boxes, respectively; 

𝐴 ∩ 𝐵 is their intersection; 𝐴 ∪ 𝐵 is their union; and 𝐶 is the smallest enclosing box that contains 

both 𝐴 and 𝐵. This loss function evaluates how well the predicted bounding box covers the 

ground truth while minimizing unnecessary coverage beyond the actual object, which is crucial 

for accurate object recognition and localization. 

The model is optimized using the Adam optimizer, chosen for its ability to efficiently 

manage sparse gradients and adapt parameters based on the data, ensuring the bounding boxes 

are refined to meet stringent accuracy requirements. This refinement process significantly 

enhances the detection and positioning accuracy of objects, which is critical for systems relying 

on reliable data for decision-making. 

 

E. Geometric Aware Refinement 

In the post-processing phase, we leverage the planar nature of physical traffic signs to 

enhance the precision of their 3D bounding boxes. Given that real-world traffic signs are 

essentially planes, our focus is on optimizing the alignment and dimensions of the bounding 

boxes around these planes. To achieve this, we also shift the bounding box so that the calculated 

plane is centered, followed by constraining the box to fit closely around the traffic sign. 

The process involves the following key steps: 

1. PCA Computation: For each bounding box generated during the projection phase, we 

identify a subset of points from the 3D scene corresponding to the traffic sign. These points 

form a point cloud within the bounding box. We then apply Principal Component Analysis 

(PCA) to this point cloud to extract the principal components, which represent the variance 

and directionality of the data. 

2. Plane Formation: Using the eigenvectors corresponding to the two largest eigenvalues, 

we define the plane that best fits the traffic sign. These eigenvectors form the basis vectors 

of the plane. 

3. Angle Calculation: We calculate the angle between the newly formed plane and the XY 

plane by computing the arccosine of the dot product of the normal to the PCA plane and 

the Z-axis unit vector, normalized by the product of their magnitudes: 

 

𝜃 = cos−1 (
𝑛𝑃𝐶𝐴.𝑘

‖𝑛𝑃𝐶𝐴‖
)                (5) 
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         where 𝑛𝑃𝐶𝐴 is the normal vector of the PCA plane, and 𝑘 is the unit vector along the Z-axis. 

4. Rotation: The bounding boxes, initially axis-aligned, are rotated by this angle to align them 

with the identified PCA plane. 

5. Bounding Box Constraining: We shift the bounding box so that the plane calculated is 

centered within it. Then, we adjust the dimensions of the bounding box to fit tightly around 

the PCA plane, ensuring it encloses only the area of the traffic sign without including excess 

background or empty space. 

 

This geometric-aware refinement ensures that the bounding boxes are not only accurately 

positioned but also properly oriented and scaled relative to the traffic signs’ actual dimensions in 

the 3D space. This method significantly enhances the fidelity of the bounding boxes, aligning 

them more closely with the physical properties of the traffic signs. 
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RESULTS AND DISCUSSION 

To evaluate our approach, we constructed a custom dataset from the Kitti 3D Object 

Detection dataset (Geiger et al., 2013) by specifically selecting images that contain at least one 

traffic sign. The Kitti dataset, renowned in the computer vision community for autonomous 

driving research, provides a wealth of data, including LiDAR point clouds for detailed 3D scene 

representation, calibration parameters for accurate sensor data alignment, and stereo images from 

left and right viewpoints to facilitate depth perception and 3D reconstruction. Initially, the 

dataset’s training labels primarily cover categories like cars, pedestrians, and cyclists, and 

notably omit traffic signs. 

To address this gap and tailor the dataset to our needs, we manually annotated the traffic 

signs in the 2D left images and 3d point cloud. This modification ensures that our dataset is 

specifically equipped to test our model’s performance in detecting and refining traffic sign 

bounding boxes. 

 

A. Reprojection Loss 

To evaluate our method, we employ reprojection error as our primary metric. 

Reprojection error is calculated by projecting the refined 3D bounding boxes back onto the 2D 

image plane using the camera’s calibration parameters and then comparing these projected 

bounding boxes against the manually annotated ground truth in the 2D images. The discrepancy 

is quantified as the pixel distance between the edges of the projected 2D bounding boxes and 

those of the ground truth, providing a direct measure of the accuracy with which the 3D models 

align with their 2D counterparts. 

We trained the Reprojection Loss Network (RLN) model on 210 annotated images from 

our custom training dataset. (Figure 2) shows the model loss over 30 epochs on the training 

dataset. 

 

 
Figure 2 Training loss of RLN model over 30 epochs 

 

The initial reprojection error in these training images was 18.6476%, which the model 

successfully reduced to 0.9658%. Testing on 49 testing images, the model further demonstrated 
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its generalization capability by decreasing the initial error from 16.3048% to 0.5694%. Figure 3 

shows examples of the reprojection improvements, highlighting the effectiveness of our model. 

 
 

Figure 3 The original reprojection in red and the model output in green 

 

B. Geometric-Aware Refinement 

 The proposed method can be applied to 3D scenes reconstructed from images or to real 

LiDAR data. In our experiments, we initially used bounding boxes obtained solely from the 3D 

scene reconstruction to approximate the bounding boxes in the LiDAR sensor space. We then 

employed our geometric-aware refinement process to enhance these approximations. 

 As demonstrated by (Figure 4), our method successfully identified and refined the 

bounding boxes for the LiDAR point cloud data, accurately aligning them with the actual 

dimensions and orientations of the traffic signs. This refinement process not only improved the 

positioning and orientation of the bounding boxes but also ensured they closely matched the 

physical properties of the objects detected in the LiDAR data, highlighting the method’s 

effectiveness in different 3D data sources. 



 

 

33 

 

 
 

Figure 4 Red bounding boxes show the initial approximations, while blue boxes represent 

the results after geometric-aware refinement in 3D point cloud (Bird’s eye view). The 

refinement process significantly improves the alignment and accuracy of the 3D bounding 

boxes for Kitti’s LiDAR data. 
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CONCLUSIONS AND POLICY IMPLICATIONS 

This study presented a method for 3D object detection of traffic signs using image-based 

depth data, avoiding the reliance on expensive LiDAR sensors. The approach combines a 

Reprojection Loss Network (RLN) and a geometric-aware refinement technique to enhance the 

precision of 3D bounding boxes. The RLN focuses on minimizing reprojection errors, while the 

geometric-aware refinement aligns the bounding boxes with the planar features of traffic signs, 

ensuring accurate orientation and dimensions. 

Our experiments showed significant improvements in reprojection accuracy and 

alignment with actual objects, validated using a custom dataset based on the Kitti 3D Object 

Detection dataset specifically annotated for traffic signs. 

This method offers a cost-effective and precise solution for 3D traffic sign detection and 

localization, which is crucial for autonomous driving. Future work could explore further 

improvements, such as the integration of this approach with other sensory data and its 

application to other objects important for autonomous navigation. 

 The findings of this study carry important policy implications for the deployment of 

autonomous vehicles. By reducing dependence on expensive LiDAR systems, the proposed image-

based depth estimation approach lowers the overall cost of perception technology, making 

autonomous navigation more accessible to a broader range of communities. Policymakers could 

leverage such cost-effective methods to encourage wider adoption of autonomous systems, 

particularly in regions with limited infrastructure funding. Integrating reliable traffic sign detection 

into regulatory standards could further enhance roadway safety while supporting all users in 

transportation through more affordable autonomous vehicle designs and broader societal benefits. 
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